IWATEEL

Test and Measuring Instruments Catalog

Vol. 4

Semiconductor Curve Tracer
Digital Oscilloscope
Isolation Measurement System
Isolation Probe
Probe
Digital Multimeter
Universal Counter
Function Generator
Delay Pattern Generator
B-H Analyzer

Targeting tomorrow's electronics

At IWATSU, our focus is always on the future. With the relentless pace of development in the electronics industry, success demands innovation, creativity, and an unwavering commitment to research and development. Building on our solid base of accumulated basic research, we are expanding our cutting-edge $R \& D$ with high technology both domestically and overseas. In addition to power electronics and it's managements such as inverters for train, PV(photovolatics), etc. we manufacture a wide range of electronic equipment and systems to cover various types of demands from industries and research for energyefficient power managements.

1950's	1952	Grant-in-aid for industrial technology research was offered to our design of shock-wave measurement device. Two years later, Japan's first domestic oscilloscope was put on the market (trademark registered as SYNCHROSCOPE).
	1957	Listed on the first section of the Tokyo Stock Exchange.
1960's	$\begin{aligned} & 1961 \\ & 1962 \end{aligned}$	Development and manufacture of proprietary CRT for waveform observation started. Development and manufacture of proprietary IC started.
1970's	$\begin{aligned} & 1970 \\ & 1974 \end{aligned}$	The first domestic IC oscilloscope released, providing a compact and light oscilloscope. Colona-Denshi Co., Ltd., (present name: Iwatsu Test Instruments Corporation, Aizu factory) was established in Wakamatsu, Aizu, Fukushima as a production base for electric measurement equipment.
1980's	1980	World's fastest analog storage oscilloscope released.
1990's	1991	An overseas affliate Iwatsu (Malaysia) Sdn. Bhd. (presently a consolidated subsidiary of Iwatsu Electric Co, Ltd.) was established.
	1999	Digital oscilloscopes were joint-developed with LeCroy Corporation.
2000's	2000	Iwatsu TME Service Co., Ltd., (present name: Iwatsu Test Instruments Corporation), a service company specializing in measurement equipment, was established.
	2002	Iwatsu Test Instruments Corporation was established from the measurement division of Iwatsu Electric Co, Ltd.
		The world's only 1GHz bandwidth analog storage oscilloscope, TS-81000 was released, featuring high speed high brightness writing.
	2004	50th anniversary of oscilloscope sales.
		Digital oscilloscopes to support Microsoft® Windows® OS were released. Digital multi-meter with two-channel input, VOAC7520 was released.
	2005	Full-scale entry into the field of measurement for the automobile industry.
	2006	Four models of digital oscilloscope DS-5100 series were released, providing high performance with low cost. Full-scale entry into the field of measurement for high performance electromagnetic steel sheets with the world's first V-H analyzer IE-1131B.
	2007	An isolation system for power electronics, DM-8000 was released, providing highly accurate measurement of ultra-high voltages.
	2009	Full-scale entry into the field of measurement for power semiconductors, with three models of CS-3000 series, a semiconductor curve tracer supporting high current at 1,000A.
		Capacitance displacement meter with high resolution and high stability, the ST-3541 series were released.
2010's	2010	Eight models of digital oscilloscope DS-5300 series were released.
	2011	Two models of CS-10000 series, a semiconductor curve tracer supporting ultra-high voltage high current, and three models of CS-5000 series were released, providing support to all needs in the field of measurement for power semiconductors.
		Genuinely domestic highly accurate measurement equipment, radiation dosimeter SV-1000/SV-2000 were released.
	2012	B-H analyzer SY-8218 was released and eight models of digital oscilloscope DS-5500 series were released. Rogowski-coil current probe SS-280 series and High voltage differential probe SS-320 were launched. Universal Counter SC-7217/7215 were released.
	2013	New Function Generator SG-4322/4321 were launched.
	2014	functions providing additional p

IWATSU
 Test and Measuring Instruments

Semiconductor Curve Tracer 4
CS-5400, CS-5300, CS-5200, CS-5100, CS-3300, CS-3200, CS-3100,CS-15800, CS-12800, CS-10800, CS-10400
Digital Oscilloscope 20
DS-5654, DS-5652, DS-5634, DS-5632, DS-5624, DS-5622, DS-5614, DS-5612,DS-5424, DS-5422, DS-5414, DS-5412
Isolation Measurement System 26
DM-8000H
Isolation Probe 31SE-6000, SE-6010
Probe 32
Digital Multimeter 36VOAC7602, VOAC7523H, VOAC752OH, VOAC7522H, VOAC7521H
Universal Counter 44
SC-7207H, SC-7206H, SC-7205H, SC-7217, SC-7215
Function Generator / Boost Amp 48
SG-4322, SG-4321, SG-4105, SG-4104 / SG-300
Delay Pattern Generator51
DG-8000
B-H Analyzer54
SY-8218, SY-8219

Multipurpose Unit Measures Leakage Current and High Current. Auto Measurement Supported!

The best solution to properly measure semiconductors such as IGBTs, MOSFETs, TRANSISTORs and DIODEs from small to large quantities.

Semiconductor Curve Tracer
 CS-10000 Series
 10 kV to $15 \mathrm{kV}, \sim 8,000 \mathrm{~A}$ CS-5000 Series
 $5 k V, \sim 1,500 \mathrm{~A}$ CS-3000 Series
 $3 \mathrm{kV}, \sim 1,000 \mathrm{~A}$

Order Information

	Model Name	Model Number	Remarks
Main unit	Semi-conductor Curve tracer	CS-3100	3kV
		CS-3200	3kV, 400A
		CS-3300	3kV, 1,000A
		CS-5100	5 kV
		CS-5200	$5 \mathrm{KV}, 400 \mathrm{~A}$
		CS-5300	$5 \mathrm{kV}, 1,000 \mathrm{~A}$
		CS-5400	$5 \mathrm{kV}, 1,500 \mathrm{~A}$
		CS-10400	10kV, 4,000A
		CS-10800	10kV, 8,000A
		CS-12800	12kV, 8,000A
		CS-15800	15kV, 8,000A
Fixture	Fixture S	CS-301	Comes with CS-3100
	Fixture M	CS-302	Comes with CS-3200/3300
		CS-303	Comes with CS-5100/5200/5300
		CS-304	Comes with CS-5400
	Large Fixture	CS-305	
		CS-307	
Prober Cable	Fixture cable for CS-5400	CS-306	for CS-3000 / CS-5000 except CS-5400
	Prober cable	CS-308	for CS-5400
Alligator Clip	Small alligator clip Red 10pcs	CS-001	
	Small alligator clip Black 10pcs	CS-002	
Cable	High voltage wire Red 5pcs	CS-003	Banana clip, 5kV, 30cm
	Wire Black 5pcs	CS-004	Banana clip, 30cm
	Standard Lead Set	CS-005	Comes with Main unit except CS-3100, Banana cable 30cm (Red $2 p c s$ for HV, Black 2pcs, Green 2pcs, and Yellow 1pc. Alligator Clip (Red 2pcs, Green 2pcs, Black 2pcs, and Yellow 1pc)
	Cable for High Current	CS-006	20cm,2pes come with CS-5400
	Cable for High Current	CS-007	$30 \mathrm{~cm}, 2 \mathrm{pcs}$ come with CS-10400/10800
Software	Semi-conductor parameter search	CS-800	Built in Main unit
	Semi-conductor parameter measurement	CS.810	Install in PC
Test Adapter	Test adaptor	CS-500	Comes with Main unit
	TO type test adaptor	CS-501A	
	AXIAL type adaptor	CS-502	
	T0-263-3(D2PAK) type adaptor	CS.503	
	T0-252-3 type adaptor	CS-504	
	T0-263-7 type adaptor	CS-505	
	T0-252-5 type adaptor	CS-506	
	SC-70-3(S0T-323-3) type adaptor	CS-507	
	SC-59A/SOT-23-3 type adaptor	CS.509	
	SC-62/SOT-89 type adaptor	CS.510	
Scanner unit	Switch control unit	CS-701	Integrated controller for each unit
	LV Relay unit	CS.702	$300 \mathrm{~V} / 30 \mathrm{~A} 10 \mathrm{CH}$
	HV Relay unit	CS.703	$5 \mathrm{kV} / 3 \mathrm{~A} 10 \mathrm{CH}$
	HC Relay unit	CS.704	2kV/1,000A 10CH
	HV-HC Switch unit	CS.705	$5 \mathrm{KV} / 1,000 \mathrm{~A}$, Extension unit with HV/HC switch function
	Extension unit	CS-706	5kV/15A
	Gate/Short unit	CS-707	Curve tracer side:300V/8A Device side:5kV/8A 10CH
	HV-HC Relay unit 2CH	CS-708	5kV/1,500A 2CH
	HV-HC Relay unit 4CH	CS.709	$5 \mathrm{KV} / 1,500 \mathrm{~A} 4 \mathrm{CH}$
	HV-HC Switch unit (for CS-5400)	CS.710	5kV/1,500A, Extension unit with HV/HC switch function
	Fixture with hotplate function	CTJ1050	Heater surface 5 kV insulating, Max. Temperature:200 ${ }^{\circ} \mathrm{C}$, Interlock function
	Hotplate	PA3020	Dimension of Plate portion:200 $\times 200 \mathrm{~mm}$
		PA3040	Dimension of Plate portion:200 $\times 400 \mathrm{~mm}$

Advanced functions for your ease of use

The configuration is displayed in the setup display area under CONFIGURATION key sets.
Appropriate configuration can be selected for each device test.

Confirm applied voltage and current with waveforms in Wave mode.

- The pulse width and the measurement point can be specified even when you are confirming the applied waveform (current and voltage) to the device based on the time axis as with oscilloscopes.
- By confirming the waveform, appropriate pulse width and measurement timing can be decided.
- Since our products give no waveform influences such as probing of oscilloscopes, etc., abnormal signals are confirmable. - This function also helps to confirm the anomalies caused by heat such as a oscillation, etc.

Full detailed automation with PC

Semiconductor parameter measurement with CS-810 (optional)
This software application performs various kinds of auto measurements through remote control of the main unit. This software can execute stress test; which is difificult using traditional curve tracers, and can measure temperature characteristics of many devices, while controlling at the same time a hotplate and a thermostatic chamber.

USB memory:

Graphic Images, Data, and Setup conditions can be saved. Graphic Images can be saved in various formats: TIFF,BMP,PNG. Black/White selection for color of background, color/monochrome selection are available. Waveform data can be saved in Text and in Binary at the same time.

Remote Control tool (free download) Where security policy restricts use of USB, the remote control tool for PC can be used.

Ethernet:
Ethernet socket provided as a standard function (on the back side of Main unit)

Sweep

Number of points, sweeping speed, the resolution, and the direction of sweeping can be configured as needed. The custom sweep mode performs sweeping only on the specified range, high speed resolution measurement is performed at auto-measurement.

Limit-SWEEP function (requires optional CS-800)
This function puts limits on current and voltage produced through usual sweep measurement for device protection and stopping the sweep at the targeted value.

Vth-hFE auto search function (requires optional CS-800)
This function automatically finds the Vth-hFE. No complicated operations are needed.

Separate knobs for easy operations

CONSTANT function with CS-800 (optional)
Bias constant voltage or constant current.
With combination of semiconductor parameter measurement software CS-810,
the curve tracer supports Auto stress test.

Semiconductor Curve Tracer 5 kV
 CS-5000 Series

Best suited for measuring the breakdown of a power device having

3,300V withstanding voltage

- Max. Peak Voltage: 5,000V (High-Voltage mode)
- Max. Peak Current: 1,500A (CS-5400 High-Current mode)
- All models support the LEAKAGE mode (Cursor resolution:1pA)

5kV
CS-5400
1,500A (HC mode pulse)

5kV
CS-5300
1,000A (HC mode pulse)
CS-5200
400A (HC mode pulse)

5kV
CS-5100
(HC mode not equipped)

Collector supply HV mode

Model		CS-5000 series
Mode/Polarity	Full-wave rectification/+-, DC/+ -	, AC
Max. Peak Voltage/Current	Max. Peak Voltage	Max. Peak Current (Max. Peak Pulse Current)
	5 kV	25 mA (25mA)
	300 V	750 mA (1.5A)
	30 V	7.5A (15A)
Max. Peak Power	At 5kV : 320mW/3.2W/32W At 30V,300V : 120mW/1.2W/120W/390W	
Horizontal axis range	50 mV to 500V/div	

Collector supply HC mode (CS-5100 does not equip with HC mode)

Model		CS.5100	Cs.5200		CS.5300		CS-5400	
HC mode	Mode/Polarity		Pulse / +-					
	Max. Peak Current Max. Peak Power Max. Peak Voltage	No HC Mode equipped	Max. Peak Current/Power	Max. Peak Voltage	Max. Peak Current/Power	Max. Peak Voltage	Max. Peak Current/Power	Max. Peak Voltage
			400A / 4kW	40V	1,000A / 10kW	40 V	1,500A / 12kW	30V
			40A/ 400W		400A / 4kW	40V	600A / 4.5kW	30V
					40A / 400W	40V	60A / 450W	30V
	Pulse width		Pulse width : variable between $50 \mu \mathrm{~s}$ and $400 \mu \mathrm{~s}$ (Resolution :10 $\mu \mathrm{s}$)					
	Measurement point		Measurement point can be specified. (Resolution :10 $\mu \mathrm{s}$)					
	Vertical range		100 mA to 50A/div		100mA to 100A/div		100mA to 200A/div	
Fixture		CS-303					CS-304	

Semiconductor Curve Tracer 3 kV CS-3000 Series

Standard models suitable for parameter measurement of various semiconductors including IGBTs, MOSFETs, transistors and diodes, etc.

- Max. Peak Voltage 3,000V (High-Voltage mode)
- Max. Peak Current 1,000A (CS-3300 High-Current mode)
- All models support the LEAKAGE mode (Cursor resolution:1pA)

3kV
CS-3300
1,000A (HC mode pulse)
CS-3200
400A (HC mode pulse)

Collector supply HV mode

Model		All CS-3000 Series
Mode/Polarity	Full-wave rectification/+-, DC/ +-	, AC
Max. Peak Voltage/Current	Max. Peak Voltage	Max. Peak Current (Max. Peak Pulse Current)
	3kV	75 mA (150mA)
	300 V	750 mA (1.5A)
	30V	7.5A (15A)
Max. Peak Power	120mW / 1.2W / 120W / 390W* (Setup is not available when Max. Peak Voltage 3kV is used.)	
Horizontal axis range	50 mV to 500V/div	

Collector supply HC mode (CS-3100 does not equip with HC mode)

Model		CS-3100	CS-3200		CS-3300	
HC mode	Mode/Polarity		Pulse / +-			
	Max. Peak Current Max. Peak Power Max. Peak Voltage	No HC Mode equipped	Max. Peak Current/Power	Max. Peak Voltage	Max. Peak Current/Power	Max. Peak Voltage
			400A / 4kW	40V	1,000 / 10kW	40 V
			40A / 400W	40V	400A / 4kW	40 V
			40A/400		40A / 400W	40V
	Pulse width		Pulse width: Changeable between $50 \mu \mathrm{~s}$ to $400 \mu \mathrm{~s}$ (Resolution: $10 \mu \mathrm{~s}$)			
	Measurement point		Measurement point can be specified. (Resolution: $10 \mu \mathrm{~s}$)			
	Vertical range		$100 \mathrm{~mA} \mathrm{to} \mathrm{50A/div}$		100mA to 100A/div	
Fixture		CS-301	CS-302			

Analog Curve Tracer 10 kV ~

Best suited for the measurement of high voltage diodes and thyristors

Output	Voltage waveform	Commercial Power supply half-wave rectification waveform
	Max.Voltage	10kV Peak (when no loading)
	Max. Current	100mA Peak or 400mA
Display	Voltage range	$50 \mathrm{~V} /$ div to $1,00 \mathrm{~V} /$ /div (1-2-5 steps)
	Current range	$0.1 \mathrm{~mA} /$ div to 10mA/div or 50mA/div

[^0]

Semiconductor Curve Tracer $10 \mathrm{kV}, 12 \mathrm{kV}$ and 15 kV CS-10000 Series

Best suited for the chips with very high voltage and very high current, CS-3100 + UHV + HC

CS-15800 15kV / 8,000A
CS-12800 12kV / 8,000A
CS-10800 10kV / 8,000A
CS-10400 10kV / 4,000A

This series is sold-on-demand.
Please confirm the specification and the delivery date at the time of estimation. Requests for customization are welcome.

Optional Pulse Unit
This optional unit minimizes parameter variation caused by heat. Pulse rise time can be configured for 1,3 , or 5 ms ; pulse duration from 1 ms to 20 ms ; and pulse interval from 100 ms to 2 seconds. This option is installed at the factory. Any changes desired after purchase will require return to IWATSU factory.

Collector supply HV mode

Model	CS-10000 series	
Mode/Polarity	Full-wave rectification/+-, DC/+-, LEAKAGE/+-, AC	
Max. Peak Voltage/Current	Max. Peak Voltage	Max. Peak Current (Max. Peak Pulse Current)
	3 KV	$75 \mathrm{~mA}(150 \mathrm{~mA})$
	300 V	$750 \mathrm{~mA}(1.5 \mathrm{~A})$
	30 V	
Max. Peak Power	$120 \mathrm{~mW} / 1.2 \mathrm{~W} / 120 \mathrm{~W} / 390 \mathrm{~W} *$ (*Setup is not available when Max. Peak Voltage 3kV is used.)	

Collector Supply UHV mode

Model	CS-10400/CS-10800		CS-12800		CS-15800	
Mode/Polarity	DC/ +					
Max. Peak	Max. Peak Voltage	Max. Peak Current	Max. Peak Voltage	Max. Peak Current	Max. Peak Voltage	Max. Peak Current
Voltage/Current	10kV	400 mA	12kV	266 mA	15kV	266 mA
Max. Peak Power	40W / 400W / 4kW		32W / 320W / 3.2kW		40W /400W / 4kW	

Collector Supply HC mode

Model	CS-10400		CS-10800/12800/15800	
Mode/Polarity	Pulse / +-			
Max. Peak Current Max. Peak Power Max. Peak Voltage	Max. Peak Current / Power	Max. Peak Voltage	Max. Peak Current / Power	Max. Peak Voltage
	Max. $4,000 \mathrm{~A} / 60 \mathrm{~kW}$	Max. Peak VoV	8,000A / 80kW	40V
	400A / 6kW	60 V	4,000 / 60kW	60 V
	40A / 600W	60 V	400A / 6kW	60 V
			40A / 600W	60V
Pulse width	$50 \mu s \sim 900 \mu s, 50 \mu s \sim 120 \mu s($ at 8,000A) (Resolution:10 $\mu \mathrm{s}$)			
Measurement point	Measurement point can be specified. (Resolution :10 $\mu \mathrm{s}$)			
Horizontal axis range	100mA to 1,000A/div			

Test adaptors

Contact us if other types of sockets are needed.

Standard accessories

Use test adaptors on measurements of devices. Fixtures equips the safety mechanism in which the measurement stops when the cover opens.

Fixture S

Fixture M

This fixture can measure a device up to $235 \mathrm{~mm} \times 180 \mathrm{~mm}$. Place the patch panel attached when TO adaptor used.

Fixture S CS-301
comes with CS-3100

$$
\begin{aligned}
& \text { Fixture M } \\
& \text { CS-302 } \\
& \hline \text { comes with CS-3200/3300 } \\
& \text { CS-303 } \\
& \hline \text { comes with CS-5100/5200/5300 }
\end{aligned}
$$

Fixture M
CS-304
comes with CS-5400

(Note: Test adaptor is optional and does not come with the unit.)

Patch-panel for Fixture M
(comes with all units except for CS-3100)

Standard set of leads
CS-005
come with all units except for CS-3100
Banana cables (2 red for HV, 2 green, 2 black, 1 yellow)
Alligator clip (2 Red, 2 green, 2 black, 1 yellow)

Cable for High Current (a set of two)
CS-006
comes with CS-5400
20 cm
CS-007
comes with CS-10400/10800/12800/15800
30 cm
Contact us for custom-made cables. We can change clips, lengths, withstand voltages, etc.

Scanner System
 CS-700

The CS-810 software application provides automatic connection for multiple devices in a single package including commonly available modules containing 6 devices. It can also be used to individually connect to and test up to 10 single devices. CS -810 also controls relay units, thermostatic chambers and hot plates, so it can measure the temperature characteristics of each chip in 6 in 1 modules. (CS-800 and CS-810 required for scanner operation)

Switch Controlling Unit

CS-701
$\overline{S C-701}$ is required so the CS810 software can control each CS-700 scanner unit up to 8 units, by connecting a PC through Ethernet. Multiple CS-701 (Max. 10 units) can operate in parallel if given IP addresses.

Relay Unit

HC Relay Unit
CS-704
2kV/7.5A/1,000A (Pulse)
10 CH

Extension Unit

$5 \mathrm{kV} / 1,000 \mathrm{~A}$ (Pulse)
In case CS-5400 is used, modifications are required.

Extension Unit
CS-706 _

HV/HC Switch Unit
CS-705
5kV/1,000A (Pulse)
HV/HC switching (Auto/Manual) supported

- For CS-3200/3300/5200/5300

HV/HC Switch Unit
CS-710
5kV/1,500A (Pulse)
HV/HC switching (Auto/Manual) supported

- For CS-5400

- For CS-5400

Example: connecting the unit to IGBT 2 in 1 module.

HV-HC Relay Unit
CS-709
5kV/7.5A/1,500A (Pulse)
4 CH

Temperature characteristics measurement
CS-810 automatically measures temperature characteristics, controlling the scanner system and hotplates, etc.

The picture on the right is a hotplate controllable combination of curve tracers, hotplates, and scanners. It provides a means to perform automatic measurement of multiple devices, 6 in 1 module, etc.

Temperature

Fixture with hotplate functions
CTJ1050
Maker : CATS Inc.
Max. Temperature : $200^{\circ} \mathrm{C}$
Max Voltage on devices 5kV (Insulating surface of heater 5 kV)
Max. Current: 1,000A
Interlocking (when you open the cover,
curve tracer stops outputting.)

Hot-Plate
PA3020/PA3040
Maker : MSA Factory Co., Ltd.
Max. Temperature : $300^{\circ} \mathrm{C}$
Hot plate measurement :
PA3020: 200×200
PA3040: 200×400
Monitor Temperature by External temperature sensor.

Thermostatic chambers are available.
Contact us for the details.

Prober cable
This is used to equip terminals of curve tracers inside Probers and large fixture.

Large Fixture
CS-305
Cooling fan, LED light, Warning light, Power supply outlet and Interlock are equipped. External dimensions: 630Wx520Hx530D

Large Fixture
CS-307
Interlock equipped
External dimensions: 500Wx520Hx520D

Software Application for parameter measurement of semiconductors : CS-810

CS-810 is an optional Software application that controls curve tracers, scanners, hotplates performing measurement and thereby automates the measurement. This makes improvement great in work efficiency.

Automates:

Measurement \rightarrow Recording \rightarrow Judgment Improvements in efficiency to replace task that was traditionally performed manually

	Ices	Vces	VF	Vth	\cdots
Sample-1	XXXXA	XXXXV	XXXXV	XXXXV	\cdots
Sample-2	XXXXA	XXXXV	XXXXV	XXXXV	\cdots
Sample-3	XXXXA	XXXXV	XXXXV	XXXXV	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
	\vdots	\vdots	\vdots	\vdots	\vdots

Switches automatically multiple-semiconductor modules and discrete devices to be targeted when you perform measurement

Hotplates are also remote-controllable, so Automatic measurement of 6 in 1 module can be performed too.

Easy to transfer the configuration measured to PC

By transferring the configuration measured manually on curve tracer to PC, you can set up the sequence. Programming knowledge is not required and anyone can set up it easily.

\begin{tabular}{|c|}

\hline \begin{tabular}{l}

TestSuiteFile(Common Setup)

Suite 1
Item 1

Item2

Suite2
Item 1
Item2
\end{tabular}

\hline
\end{tabular}

This key copies the configurations in the curve tracer to PC.

This key copies the configurations in PC to the Curve tracer.

This window is useful when you specify the threshold for the levels.

Categorization to the levels based on the measured value.
You can set 10 levels to which acquired result will be categorized.
For each levels, events to be performed, such as halting the measurement, skipping
the measurement of such item
Showing an alert, Copying the waveform as an image, exporting to CSV files.

Measurement of static characteristics (Leakage current, Saturation voltage, VF, Vth, etc.)

Measurement type : Sweep
> Point with the larger data than the specified value.
< Point with the smaller data than the specified value.
\cong Point with the data closer to the specified value.
$=$ Point with data equal to the specified value under interpolation.

Trial Measurement :
This is a function for debugging and the sequence can be confirmed.

Measurement type : Stress Logging of voltage or current is available by biasing constant voltage or constant current for a long time. This is used for Stress test and reliability test.

Measurement type : Vth
Makes measurement with the curve tracer's Vth Search function.

Output Window

A selection of export formats For the log file.

Software Application for parameter measurement of semiconductors : CS-810

Comparison among the curves

This application can compare a number of waveforms stored for the purpose of analysis of variation of characteristics and defects as well as Pass/Fail judgment.

Comparison between the waveforms and

 Judgment functionsThis application can compare a waveform with reference waveform and judge whether the first waveform meets the specified condition.

Waveforms display

CSV files stored during past use, recall-waveforms stored in Curve tracer, and the waveforms currently monitored can be compared on the same graph up to 10 waveforms at the same time.

Rescaling

The displaying waveform can be stored in a CSV file at an arbitrary interval in voltage axis.

Cursor function

The displaying numerical numbers of waveforms are shown in a list. Besides the sampling points, this function interpolates the measured data.

Annotations

Annotations can be attached to the curves respectively.

Saving the images

Saving the images in various image format (PNG/BMP/JPG/TIFF) with a set of cursor values.

A selection of Graph styles

- Settable items

Chart title, background color, cursor color, line style (solid, dotted, broken)
For X and Y axes: Title, what data to be assigned, Scale (Log, linear) For Y axis only, intervals, min value, max value and grids.

The measuring function for the transfer characteristics (Vge-Ic/Vge-Vce)

It used to be difficult for a curve tracer to measure transfer characteristics, however IWATSU can measure it now.

Various formats to save curves for

characteristics

- Save the measured characteristics to CSV files.
- Save the curve image as PNG/BMP/JPG/TIFF

Cursor function

Cursors are displayed in X axis and Y axis interpolated value is displayed.

Customizable chart area

Chart title, axis label, background-color, and the axis ranges are all customizable.

Load/Save function of Configurations

This software can load/save the configurations for characteristics measurement and the customize done to the chart area.

Software Application for parameter measurement of semiconductors : CS-810

Measurement of devices

Multiple devices measurement and recordings can be performed in a short time.
This software performs tests for multiple measurement items .
Operator simply need to input sample name according to the device replacements and connection changes, following the instructions on popups, to repeat measurement under the same conditions. Judgments (Pass/Fail) based on the requirements given will be shown for each measurement, and images and waveforms data also will be stored automatically.

1
Input sample name and set it to Fixture.

3
Popup stops the measurement or gives instructions based on the measurement results.

4
Popup stops the measurement or gives Instructions based on measured items.

Displays the measured value and the judgment results during measurement.

(5)
Logs on the measurement can be exported to CSV file or Excel file afterwards. Logs on Stress test will be saved on separate files. Re-measurement of the selected item can be performed.

Measurement function of circuit modules

This software controls the scanner system as well as the curve tracer. The software also controls open/short and HV/VC. All the measurements for a module can be fully automatically performed without a need for unplugging.

Configuration on one-circuit can be applied to the other circuit as the application supports copy \& paste.

Unused Gates and Emitters can be short-circuited.

Software Application for parameter measurement of semiconductors : CS-810

Evaluation of Semiconductor Temperature characteristics measurement

CS-810 controls hotplates too. Even measurement that takes a long time such as per temperature can also be performed automatically.

Currently, we just offer fixtures with hotplates, but we are trying our best to offer a unit simply provides hotplates or fixed-temperature chamber. For details on supported units, feel free to ask us.

Stress test

A wide variety of parameters can be incorporated in stress test.
This software supports long-time reliability tests. While the software monitors the voltage and the current via curve traces, differences of those traces are logged. Auto measurement of a wide variety of parameters is available for the stress test as illustrated below. The biasing will stop in excess of the limit value which is set for current or voltage as a lower and upper limit.

The software measures Ic or Vce (Interval: 10s to 2h) keeping a certain voltage or current (10s to 1,000h)

Software Application for parameter measurement of semiconductors : CS-810

Test of Discrete devices

Measurement of multiple devices with one touch operation after cable connection

CS-810 will let us copy the configuration for one circuits to the others up to $10 \mathrm{CH}^{*}$, making it easier to iterate the circuits and perform measurement for each Circuit.

* Up to 10 systems operate in parallel on CS-700 Series.

Measurement of wafers

Devices on wafers can be measured by connecting a prober system.

We have cables for connections to probers.
Some terminals have an interlocking feature for safety.

Output range for each model

HV mode Max. Peak Voltage/Max. Peak Current (Pulse current)

Model Mode	$\begin{aligned} & \text { CS-3300 } \\ & \text { CS-3200 } \\ & \text { CS-3100 } \end{aligned}$	$\begin{aligned} & \text { CS.5400 } \\ & \text { CS. } 5300 \\ & \text { CS. } 5200 \\ & \text { CS. }-5100 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { CS-10800 } \\ & \text { CS-10400 } \end{aligned}$	CS-12800	CS-15800
DC/ +	-	-	10kV/400mA	12kV/266mA	15kV/266mA
LEAKAGE/DC full-wave rectification/ AC	3kV/75mA (150mA)	$5 \mathrm{kV} / 25 \mathrm{~mA}$ (25 mA)	$3 \mathrm{kV} / 75 \mathrm{~mA}$ (150mA)		
	300V/750mA (1.5A)				
	30V/7.5A (15A)				

HC mode Max. Peak Current/Max. Peak Power/Max. Peak Voltage

Mode	$\begin{aligned} & \text { CS-5100 } \\ & \text { CS-3100 } \end{aligned}$	$\begin{aligned} & \text { CS-5200 } \\ & \text { CS-3200 } \end{aligned}$	$\begin{aligned} & \text { CS-5300 } \\ & \text { CS-3300 } \end{aligned}$	CS-5400	CS-10400	CS-10800 CS-12800 CS-15800
Pulse / + -	(HC mode not equipped)	-	1,000A/10kW/40V	1,500A/12kW/30V	-	8,000A/80kW/40V
					4,000A/60kW/60V	
		400A/4WW/40V		600A/4.5kW/30V	400A/6KW/60V	
		40A/400W/40V		60A/450W/30V	40A/600W/60V	

Common Specifications

Loop Correction	Hardware		Correction of flating capacitance between collector supply and ground
	Sotware		Simulated loop procedur by sotware thinning process
Step Generator	Ofset	Setup range Resolution	-10 times to +10 times of SETTNG UP of STEP AMPLITUDE 1\% of SETTNG UP of STEP AMPLITUDE
	Current mode	Amplitude range	21 steps /50nA to 200m, 1-2-5 switchable
		Max. Current	2 A
		Max. Voltage	More than 10 V
	Voltage mode	Amplitude range	6 steps/50nV to 2V, 1-2-5 swithable
		Max. Current	$\pm 40 \mathrm{~V}$
		Max. Voltage	500mA $\sim(\sim 8 V), 200 \mathrm{~mA} \sim(\sim 15 V), 10 \mathrm{~mA} \sim(\sim 40 \mathrm{~V})$
	Step rate		Twice of 50 Hz or 60 Hz (the same rate when AC mode), Pulse interval when HC mode
	Pulse step	Pusse widh	$50 \mu \text { s to } 400 \mu \mathrm{~s}(10 \mu \mathrm{~s} \text { step) }$ When HC mode set, approx. $100 \mu \mathrm{~s}$ wider-pulse width against collector supply pulse
	Number of steps		0 to 20 steps
AUX Output	Range		OFF, - 40V to 40V (Switchable at 100mV step)
Measurement Mode			REPEAT, STOP/SINGLE, SWEEP
Vertical axis (Full scale:10div)	Collector current	Range	HV Mode : 1μ Addiv to 2Addiv, 20steps 1-2-5 switchable (HC. mode witten separately)
		Accuracy	Add 2% of Readout $+0.05 \times$ VERT/div to the loop correction error of the following max. peak voltage $0.5 \mu \mathrm{~A}(30 \mathrm{~V}), 1 \mu \mathrm{~A}(300 \mathrm{~V}), 6 \mu \mathrm{~A}(3 \mathrm{kV}), 12 \mu \mathrm{~A}(5 \mathrm{kV}), 30 \mathrm{~V}, 300 \mathrm{~V}, 3 \mathrm{ZV}$ More than 10% of Max. Peak voltage, More than 30% (5kV)
	Emitter current(LEAKAGE)	Range	$1 \mathrm{nA} /$ div to $2 \mathrm{~mA} /$ div, 20 steps $1-2.5$ switchable ((Collector Supply mode: LEAKAGE)
		Accuracy	2% of Readout $+0.05 \times V E R T / d i v+l$ less than 1nA
Horizontal axis (Full scale:10div)	Collector voltage	Range	HC mode : $50 \mathrm{mV} /$ div to 5 SV/div, 7 steps $1-2.5$ switchable (HV mode witten separately)
		Accuracy	2% of Readout less than $+0.05 \times$ HoRIZ/div
	Base/Emitter voltage	Range	$50 \mathrm{mV} /$ div to 5 5/div, 7 steps $1-2.5$ switchable
		Accuracy	2% of Readout less than $+0.05 \times$ HoRIz/div
Screen	Display		8.4 inch TFT LCD
	Number of Data		1,000 points/trace (AC, Full-wave rectification) 20 to 1,000 points/trace (SWEEP mode)
	Trace display		Interpolation display between points, Dot display
	Average		0FF, 2 to 255 times
	Persistence		OFF, SHORT, LONG, unlinited length
	Internal waveform storage (REF)		4 screens
Cursor measurement	DOT		Vert, Horiz, β or gn
	fline		Vert, Horiz, 1/grad, intercept
	FREE		Vert, Horiz, β or gn
	WINDOW		Vert in WIINDOW area, Horiz, β or gm
Data recording/Readout	Internal memory		Setup:256, REF : 4 screens
	External memory		USB1.1 : Setup, Waveform, Screen hardcopy (BMP, TIFF, PNG)
Remote			Remote on LAN 10BASE-T/100BAE-TX 1 port
Power supply	CS-3xx, $5 \times x \times$		AC100V-ACC200 50/60Hz, Max Power:500VA (operation), 7W Nax (waiting)
	CS-1xxxx		Ac200V single phase 50/60Hz, Max Power:10kVA (operation)
External dimensions (mm) (excluding projection portion and accessories) Weight (excluding accessories)	CS-3100,5100		424W x 220H x 5550, approx.28kg
	CS-3200,330,5200,5300,5400		424W \times 354H $\times 5555$, approx.43kg
	CS-10400,10800,12800,15800		$1,110 \mathrm{~W} \times 1,216 \mathrm{H} \times 1,1500$, approx.370 kg

Digital Oscilloscope

DS-5600 Series DS-5400 Series
 -year warranty

New Functions Providing Additional Power

4-channel model DS-5654

2-channel model DS-5652

* We accept requests for calibration certificates, traceability network diagrams and inspection results on a chargeable basis.

DS-5600 Series
500MHz 4ch 2GS/s Max 5M points DS-5654
500MHz 2ch 2GS/s Max 5M points DS-5652
350MHz 4ch 2GS/s Max 5M points 350MHz 2ch 2GS/s Max 5 M points 200MHz 4ch 2GS/s Max 5M points 200MHz 2ch 2GS/s Max 5M points $100 \mathrm{MHz} 4 \mathrm{ch} 2 \mathrm{GS} / \mathrm{s}$ Max 5 M points 100MHz 2ch 2GS/s Max 5M points DS-5634 DS-5632 DS-5624 DS-5622 DS-5614 DS-5612

DS-5400 Series

200MHz 4ch 2GS/s 500k points DS-5424
200MHz 2ch 2GS/s 500k points DS-5422
100MHz 4ch 1 GS/s 500k points DS-5414
100MHz 2ch 1GS/s 500k points
DS-5412
Standard Probes Supplied Accessories

Model	Standard Probes Supplied		Standard Accessories (Miscellaneous)
	Quantity	Type	
DS-5654	4	SS-101R	- Power Cord x 1 - Front Panel Cover x1 - CD (containing Instruction Manual, Remote Control Manual) $\times 1$ - User Guide x1
DS-5652	2		
DS-5634	4		
DS-5632	2		
DS-5624	4	SS-0130R	
DS-5622	2		
DS-5614	4		
DS-5612	2		
DS-5424	4		
DS-5422	2		
DS-5414	4		
DS-5412	2		

Long Memory up to a Maximum of 5M points [2.5M points/CH when all channels being used] (Maximum of $500 \mathrm{~K} / \mathrm{CH}$ with the DS-5400 Series)
Enables long-term waveforms to be captured while maintaining high-speed sampling.

Memory Length: 500 k points Sampling Speed: 50MS/s

Waveform Gapture Time x 10

The long memory is able to reproduce an even longer waveform capture time to ensure that the entire waveform is acquired so that it can be proportionally checked later.

Memory Length: 5M points Sampling Speed: 50MS/s

Waveform Capture Time: The $s /$ div $\times 10$ div time on the time axis range at the width of the time axis displayed on the oscilloscope.

Memory Length: 1 k points
Sampling Rate: $100 \mathrm{kS} / \mathrm{s}$
Maximum Sampling Rate for the Waveform Capture Time (DS-5600 Series)

Waveform Capture Time	5 M points when the channels are interleaved	2.5M points when all channels are in use
1s	5MS/s	2.5MS/s
100 ms	50MS/s	25MS/s
10 ms	500MS/s	250MS/s
2 ms	26S/s	1G5/s
1 ms	26S/s	1G5/5

Probe Selection Function Ds-5600 Series, Ds-5400 Series

Selecting probes manufactured by Iwatsu enables attenuation ratios and coupling to be automatically set. The model number, bandwidth of the vertical range and input coupling are displayed.

Eligible Probes

Current Probes:	SS-280 Series, SS-240A, SS-250, SS-260, SS-270
Voltage Probes:	SS-320, SFP-5A, SFP-4A, HV-P30, HV-P60, etc.

Four Waveform Parameter Simultaneous Judgment / Waveform Mask Judgment Functions

Pass/Fail judgment will be carried out automatically on masks and waveform parameters. Performing this on four parameters simultaneously enables strict conditions to be set.

1. 001 NHz	Pass	NEW
481 mV M	Pass	Pass parameters displayed
625 mv a	Fail	in green, and Fail
50. 8\%	Fail	parameters displayed in red.

It is possible to perform judgment on a maximum of four waveform parameters set between A and D simultaneously.

Reinforced Noise Reduction Functions

Simple Moving Average

The Simple Moving Average (SMA) enables smoothing and noise reduction at the sampling points of the specified width, through the digital filters that can be set for each channel. This can also be used on non-repetitive single signals.

SMA: When OFF

SMA: When ON: Width $= \pm 3 p t s$

SMA : When ON: Width $= \pm 20$ pts

Averaging Count Increased

The averaging count setting has been increased from 256 times to 65,536 times. This enables non-synchronized random noise signals to be effectively reduced from measured repetitive signals.

- When the amplitude ratio for the signal (triangular wave) and noise (random) is $1: 1$
- The example of the right shows a measurement with the sampling speed set at $200 \mathrm{kS} / \mathrm{s}$ and the memory length set at 10k points.

Averaging process 0FF

Averaging process ON (averaging count at 32,768)

High Resolution

When measurements are taken at a sampling speed lower than the maximum sampling speed, it is possible to average the data captured at the maximum sampling speed, capture the waveforms, reduce random noise, and increase vertical resolution to a level equivalent to a maximum of 12 bits.
This can also be used on non-repetitive single signals.

Improved Trigger Functions [os-sfocsaits Dosshansaics

The trigger function has been reinforced so that waveforms can be triggered with optimal conditions, even for complex logic signals and serial data signals.
Complex settings performed with pattern triggers can be smoothly set with the use of touch screen operations.

Trigger Types	DS-5600	DS-5400
Edge ALT, Edge OR	\checkmark	
Cycle, Pulse width, Dropout, Edge, Pulse count, TV	\checkmark	\checkmark
Pattern	\checkmark	
NEW Serial (UART, SPI, ${ }^{2}$ C)	\checkmark	

Serial Trigger
(Example: Observing ${ }^{22}$ C signals on the serial control bus)

Adds, subtracts and multiplies two waveforms, and performs frequency analysis (FFT) on channel waveforms.
The DS-5600 Series supports differential and integral calculations.
The calculated waveforms can be saved as data, and can be set as the source for the automatic measurement of waveform parameters.

NEW Supports double calculations

 (DS-5600 Series)In addition to the results of addition, subtraction and multiplication, this function also supports the double calculation of FFT, differential calculus and integral calculus.

CH Waveforms	Single Operations	Double Operations
1 to 4CH (4CH unit) 1 to 2 CH (2CH unit) 2CH among the above	Addition Subtraction Multiplication	FFT Differential calculus Integral calculus
1 to 4 CH (4CH unit) 1 to 2 CH (2CH unit) 1CH among the above	FFT Differential calculus Integral calculus	
DS-5600	\checkmark	\checkmark
DS-5400	(Excluding differential calculus and integral calculus)	

[Examples of Usage]

- Addition/Subtraction: Evaluation of differential signals
- Multiplication: Evaluation of power waveforms from Voltage x Current
- FFT: Analysis of cyclic noise and vibrations, etc., in frequency domains

Supported by the DS-5600 Series

Differential calculation waveforms for square waveforms (rising 50ns, falling 100ns)
(Displays the size of the time fluctuations (dv/dt) for square waveform edges.)

Measuring Differential Serial Signals

Pulse Width Trigger
(Example: Detecting abnormal waveforms caused by glitches, etc.)

Pattern Trigger
(Example: Counter logic output signal)

Supported by the DS-5600 Series

Integral calculation waveforms for square waveforms (Displays the results of integral calculus by time (/ vadt) for the area of square waveforms.)

Frequency spectrum analysis (FFT calculations of switching voltage waveforms).

Remote Control Enables vast anounts of datat to be collected and highherevel analysist to e e criried out on P Pcs.
\square Scope Viewer (Supplied with Iwatsu Test Instruments Tools)
Download the Iwatsu Test Instruments Tools (free of charge) from the Iwatsu website download page to enable the use of utility software for easily controlling ViewGo II remotely. Functions: Oscilloscope operations, cursor measurement, waveform data file output, screen hard copies, printing, etc.

VGA Video OUT

IE-1226 Made to order

VGA output on external displays for ViewGo II is possible. In the inspection lines of factories, the efficiency will be improved and in schools, the image onto a large projector screen can be shown.

* The DS-579 cannot be used after the IE-1226 has been mounted.

Recommended for ViewGo II

Standard Probe

SS-0130R

Frequency BW: DC to 200MHz
Input RC: 10M Ω //12.5pF
Attenuation Ratio: 10:1
Length: 1.5m

SS-101R

Frequency BW: DC to 500MHz
Input RC: $10 \mathrm{M} \Omega / / 12 \mathrm{pF}$
Attenuation Ratio: 10:1
Length: 1.2m

High-Voltage Probe
HV-P30
30kV DC+AC peak or single-pulse 40kV

HV-P60

60kV DC+AC peak or single-pulse 80kV

* Check the de-rating characteristics of the high-voltage probes before selecting them.

High-Voltage Probe

SS-0170R

Frequency BW: DC to 400MHz
Maximum Input Voltage: 6kV (DC+ACpk, CAT I)
Input RC: $66.7 \mathrm{M} \Omega \pm 1 \% / / 4 p F$ or less
Attenuation Ratio: 100:1,
Cable Length: 2 m
SS-0171R
Frequency BW: DC to 400MHz Maximum Input Voltage: $4 \mathrm{kV}(D C+A C p k$, CAT I)
Input RC: $66.7 \mathrm{M} \Omega \pm 1 \% / / 4 \mathrm{pF}$ or less
Attenuation Ratio: 100:1,
Cable Length: 2 m
High-Voltage Differential Probe
SS-320
$\overline{\text { DC to } 100 \mathrm{MHz} \text { (} 1 \mathrm{kVrms} \text {) }}$

Current probe (Clamp type)

SS-250

Frequency Bandwidth : DC to 100MHz(-3dB), Maximum input range : 30A rms,
Maximum peak current : 50A peak, Measurable wire diameter : $\phi 5 \mathrm{~mm}$

SS-240A

Frequency Bandwidth : DC to 50MHz(-3dB), Maximum input range : 30A rms, Maximum peak current : 50A peak, Measurable wire diameter : $\phi 5 \mathrm{~mm}$

SS-270

Frequency Bandwidth : DC to 2MHz(-3dB), Maximum input range : 500A rms,
Maximum peak current : 700A peak, Measurable wire diameter : $\phi 20 \mathrm{~mm}$
SS-260
Frequency Bandwidth : DC to 10MHz(-3dB), Maximum input range : 150A rms, Maximum peak current : 300A peak, Measurable wire diameter : $\phi 20 \mathrm{~mm}$
PS-26 Power Source for Current Probes
Power supply for SS-240A, SS-250, SS-260 and SS-270(Input voltage AC100V(AC120V/AC200V/ AC220V are factory- delivered options.)

High-Voltage Probe
PHV/PHVS Series

Type	BW	Length	Attenuation Ratio	Maximum Input Voltage		
				AC rms (CAT I)	Impulse peak	
PHV1000-R0	400MHz	2 m	100:1	1kV	4kV	
PHVS1000-RO	400MHz	2 m	1000:1	1kV	6 kV	
PHV-641-LRO	380MHz	1.2 m	100:1	2kV	4kV	
PHV-642-LR0	300MHz	2 m				
PHV-643-LR0	150MHz	3 m				
PHV661-LR0	380MHz	1.2 m	100:1	2.8kV	6 kV	
PHV662-LR0	300MHz	2 m				
PHV663-LR0	150MHz	3 m				
PHUS662-LRO	400MHz	2 m	1000:1	2.8kV	6 kV	
PHUS663-LRO	250MHz	3 m				

* Contact us with regard to specifications not listed

FET Probe

Model	Attenuation	Input RC	Bandwidth
SFP-5A	$10: 1$	Approx. 1.9pF, Approx. 1M Ω	DC to 1GHz
SFP-4A	$10: 1$	Approx. 2.15pF, Approx. 1M Ω	DC to 800MHz
PS-25	Power supply for SFP-4A, SFP-5A and SS-320 (Input voltage AC100V only)		

SFP-5A
 PS-25

Rogowski Coil Current Probe SS-280A Series

Model	BW (-30 ${ }^{\text {B }}$)	Maximum current
SS-281A	110 Hz to 30MHz	30A, peak
SS-282A	$65 \mathrm{~Hz} \mathrm{to} \mathrm{30MHz}$	60A, peak
5S-283A	32 Hz to 30MHz	120A, peak
SS-284A	$9 \mathrm{~Hz} \mathrm{to} \mathrm{30MHz}$	300A, peak
5S-285A	6 Hz to 30MHz	600A, peak
5S-286A	3 Hz to 30MHz	1200A, peak

Common to all SS-280A series

Item.	Specifications
Cable length	1.5 m
Sensor Coil length	80 mm
Sensor Coil wire diameter	$\phi 1.7 \mathrm{~mm}$
Temerature range	
Amplifier	Odeg. to 40deg.
Coil\&cable	$-40 d e g . ~ t o ~ 125 d e g . ~$
Output	BNC connector
Power supply	AA battery ${ }^{*}$ 4pcs. or AC adaptor

DS-5600 Series Specifications

	DS5.5654	DS5.5652	DS.5634	DS.5632	DS5.5624	DS5.562	DS5.5614	DS5.5612
Waveform Data Storage	Saved on the USB with binary, ASCl1, Wathcad, calculation (ASCII), calculation (Wathead)							
Hard copy Output	TIFF, BMP and PNG (supporting transparency) inages saved on the USB or output to priters that support Pictriidgee							
Calibration Signal Output	Square Waveform 1kHz, 3Vp-p							
Power Source / Power Consumption	AC9OV to 264V(47Hz to 63Hz), AC9OV to 132V(380Hz to 420Hz) / 95VA(60W)max							
Dimensions / Unit Weight	Approximately $330 \mathrm{~W} \times 190 \mathrm{H} \times 124 \mathrm{~mm} /$ Approximatel 3.7 kg							
Guaranteed Performance Temperature	$10^{\circ} \mathrm{C}$ t $35^{\circ} \mathrm{C}$							
Operating Temperature / Humidity / Altitude								

DS-5400 Series Specifications

	DS5.5424	DS5.5422	DS.5414	DS5.5412
Frequency bandwidth (-308)	200 NHz		100 WHz	
Rise time(Typica)	1.75ns		3.5ns	
Input Channel Count	4	2	4	2
Maximum Sampling Rate	$265 / \mathrm{s}$ (when 2 channels interleaved), $165 / \mathrm{s}$ (when all channels are in use) $165 / \mathrm{s}$			165/5
Equivalent Sampling Rate	1006S/s			
Peak Detect Resolution	1 ns			
Averaging Function	2 to 256 times			
Maximum Memory Length	500k point/ch			
Vertical Resolution	8-bit			
Input Voltage Range	2mV/div to 10V/div			
Oftset Voltage	$2 \mathrm{mV} / \mathrm{div}$ to $50 \mathrm{mV} / \mathrm{div}: \pm 1 \mathrm{~V}, 50.2 \mathrm{mV} / \mathrm{div}$ to $500 \mathrm{mV} / \mathrm{div}: \pm 10 \mathrm{~V}, 502 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{~V} / \mathrm{div}: \pm 100 \mathrm{~V}$			
DC Gain Accuracy	$\pm(1.5 \%+0.5 \%$ full scale)			
Maximum Input Voltage	\pm 400Vpeak CAT I			
Band-Limiting Filter	Analog Form: 20MHz, 2NHz, 200kHz			
Input Coupling	GND, DC 1M 2 , AC 1M			
Input Impedance	$1 \mathrm{M} \Omega \pm 1 \% / / 20 \mathrm{pF}$			
Probe Sense	Automatic Detection: 1:1, 10:1, 100:1, 1000:1, Manual Settings. 1:1, 5:1, 10:1, 20:1, , 50:1, 100:1, 200:1, 500:1, 1000:1, 2000:1			
Time Axis Range	2ns/div to $50 \mathrm{~s} / \mathrm{div}$		5ns/div to 50s/div	
Standard Probe	SS-0130R (mutti-channel supplied as standard)			
Roll Mode	50ms/div to 50s/div ($100 \mathrm{~K} / \mathrm{s}$ max)			
Clock Accuracy	$\pm 10 \mathrm{pom}$			
Trigger Function	Edge, Pulse Count, Pulse Widh, Cycle, Dropout, TV			
TV Trigger (Rated) / Line setting range selection / Field selection	NTSC, PAL, Custom / Up to 3,000 / 1, 2, 4, 8			
Pulse Count Trigger Setting Range	1 to 9,999 events			
Pulse Wioth Trigger Time Setting Range	15ns to 50s			
Cycle Trigger Time Setting Range	40 n to 50s			
Dropout Trigger Time Setting Range	50ns to 50s			
Trigger Source	All channels, EXT ($\pm 0.5 \mathrm{~V}$), EXT10 ($\pm 5.0 \mathrm{O}$), Line			
Trigger Slope / Coupling	t, - / AC, DC, High Frequency Rejection, Low Frequency Rejection, Noise Rejection			
Display / Resolution	7.5-inch Color TFT LCD (touch screen) / VGA: 640×480 Pixels			
Display Mode	$\mathrm{Y}-\mathrm{T}, \mathrm{XY}$, XY Trigger			
Vector Comection	Sample Point Interpolation Display, Dot Display			
Analog Persistence	Monochrome Grayscale Display, Spectum Display			
Persistence Display Time	100ms, 200ms, 500ms, 1s, 2s, 5s, 10s, infinite			
Internal Wavetorm Storage (REF Memory)	5 Wavéforms			
Front Panel Setting Storage	Possible to save five settings in the internal memory, USB memory			
Parameter Measurement, Cursor, Zoom, Calculation, Replay Functions				
Parameter Measurenent	Maximum Value, Minimum Value, Peak-Peak, RMS, Cycle RMS, Average, Cycle Average, Top, Base, Top-Base, Rising Overshoot, Falling Overshoot, Rising Time 20-80\%, Falling Time 80-20\%, Rising Time 10-90\%, Falling Time 90-10\%, Frequency, Cycle, + Pulse Count, - Pulse Count, + Pulse Width, - Pulse Width, Duty Ratio, Integral, Skew (+ , -), Skew at level			
Simultaneous Measurement Count / Statistic Value Display	Maximum 4 Parameters / Maximum Value, Minimum Value, Measurement Count			
Loging Items, Output Destination	-			
Pass/Fail Judgnent	-			
Cursor	Time, Ampitude, Tine \& Amplitude, Value at Cursor Position			
Zoom	Press the Zoom button on the front panel to display an enlarged wavetorm on a new grid			
Calculation Function	Addition, Subtraction, Multipilication, FFT (maximum 8k points, rectangular, hanning, lla-top window functions)			
Rescale / Unit Conversion	$\mathrm{a}^{*} x+\mathrm{b}$ (x: Inout voltage,, a , : User defined) / volt, ampere, watt, ${ }^{\circ}$ C, no display			
Replay	Autonatic waveform logging, storage for a maximum of 1,024 wavetorms, replay possible			
Frequency Counter	6 characters			
Interface	Supports USB 2.OHS (device, host), GPPB (factory-delivered option DS576)			
AUX Interface	Optional external comnector			
Optional Accessories				
DSS-57 AUX 10 CH1/CH2 Output	-			
DS-578 AUX 10 CH1/TR1G Output	-			
DS-576 GP1 B Interface	GPIB : IEEE488.2 (factory-delivered option)			
Power source ootions for the DS-579 probe	Two-way power source for use with Iwatsu active probes			
Waveform Data Storage	Saved on the USB with binary, ASClI, Mathcad, calculation (ASClI), calculation (Mathcad)			
Hard copy Output	TIFF, BMP and PNG images saved on the USB or output to printers that support Pictririgged			
Calibration Signal Output	Square Waveform 1ktz, 3Vp-p			
Power Source / Power Consumption	AC90V to 264V(47Hz to 63Hz), AC90V to 132V(380Hz to 420Hz) / 95VA(60W) max			
Dimensions / Unit Weight	Approximately $330 \mathrm{~W} \times 190 \mathrm{H} \times 124 \mathrm{~mm} /$ Approximately 3.7 kg			
Guaranteed Performance Temperature	$10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$			
Operating Temperature / Humidity / Altitude				

*The DS-577 and DS-578 cannot be mounted together.
OExternal appearances and certain performance levels are subject to modification without prior notice for the purpose of product improvement, etc.

Isolation measurement system DM-8000H

- The input block, control block and display block are isolated with optical fiber cables.
(DM-900/L, DM-910/L)
- Frequency bandwidth: DC to 500 MHz .

- Simultaneous multi-channel measurement of many channels of different reference potentials. (2 to 24 channels) (DM-900/L, DM-400/L)
- Long-life battery drive. (The system can be driven by three batteries for about 12 hours) (DM-900/L, DM-910/L)
- Measurement using long memory. (DM-900/L, DM-910/L, DM-400/L)
- Simultaneous measurements of the inverter's switching waveform and ON-voltage. (DM-910/L)
- Also supports synchronous measurements with the non-isolated unit. (DM-400/L)

Example: Isolation Unit DM-900 x 12units (24ch)

Lineup

Items	Model
Main unit	DM-8000H
Acquisition control card	DM-610
Transceiver card (optical x 2)	DM-600
Transceiver card (optical x 1, metal x 1)	DM-620
Transceiver card (metal x 2)	DM-630
Isolation unit (500k points) *1	DM-900
Isolation unit (16M points) ${ }^{* 1}$	DM-900L
Isolation unit (high resolution, 500 k points) *2	DM-910
Isolation unit (high resolution, 16 M points) *2	DM-910L
Acquisition unit (500k points) *3	DM-400
Acquisition unit (16M points) *3	DM-400L

Items	Model
Optical fiber cable S $(2 \mathrm{~m})^{* 4}$	DM-002
Optical fiber cable $5(5 \mathrm{~m})^{* 4}$	DM-004
Optical fiber cable $(5 \mathrm{~m})$	DM-005
Optical fiber cable $(10 \mathrm{~m})$	DM-006
Optical fiber cable $(20 \mathrm{~m})$	DM-007
Optical fiber cable (50m)	DM-008
Optical fiber cable (100m)	DM-009
Optical fiber cable (200m) [Custom Order]	DM-010
Acquisition cable $(2 \mathrm{~m})$	DM-105
Acquisition cable (5m)	DM-106
Battery pack	DM-551
Battery pack (set of three battery packs) ${ }^{* 5}$	DM-553

[^1][^2]
Isolation with Optical Fiber cable (2 to 200 m)

The input block, control block and display block are isolated by an optical fiber cable. Owing to the fact that isolation units are isolated from each other by optical fiber cables, it is possible to simultaneously measure signals that have different reference potentials, such as signals from the high and low-side switch of an inverter or from the primary and secondary sides of a power converter.

DM-8000H main unit ■-DM-600 transceiver card
Up to 12 isolation units and acquisition units can be connected. An acquisition control card for capture control and up to 6 specially designed transceiver cards can be installed onto the main unit. The gigabit Ethernet-enabled high-speed main unit improves the waveform update speed when using 3 or more units. The interlock control terminal is on the rear panel.

Two isolation units can be connected per card.

DM-620 optical and metal transceiver card
One isolation unit and one acquisition unit can be connected per card.

- DM-630 metal transceiver card
Two acquisition units can be connected per card.

DM-610

acquisition control card

This card controls waveform capture in measurement units. It also provides a non-isolated external trigger input, which can be changed to an external trigger output terminal.

DM-900 (500k)/DM-900L (16M)
isolation units

The units are operated by a builtin battery to perform floating measurements.
Frequency bandwidth: DC to 5000Hz, highest sampling rate: $2 G S /$ s, memory length: 500k points (DM-900), 16 M points (DM-900L), input: 2channels (not isolated), interface: optical interface (set of three interfaces)

Insulation case
Withstand voltage: 10kV
(Standard accessory)

DM-910 (500k)/DM-910L (16M)
isolation units (high resolution)

The units are operated by a builtin battery to perform floating measurements.
The high resolution enables the simultaneous measurement of switching waveforms and on-voltage.
Frequency bandwidth: DC to 500 MHz , highest sampling rate: $265 /$ s, memory length: 500k points (DM-910), 16M points (DM-910L), input: 1channel, interface: optical interface (set of three interfaces)

Insulation case
Withstand voltage: 10kV (Standard accessory)

DM-002 to DM-010 optical fiber cables

The optical fiber cables are resistant to bending and external pressure.

Cable length: 2 m to 200 m *1-2-5 step length Without cover: 2 m or 5 m With cover: $5 m$ to 200m

DM-105/DM-106 acquisition cables

Interface cables especially designed for the acquisition unit. These cables are connected to the unit and transceiver by electrical signals from the DM-400/ L.

Cable length: 2 or 5 m batteries.

The DM-9xxL long memory isolation unit enables detailed analysis during a basic inverter dutity gycle.

The DM-900L and DM-990L long memory isolation units enable detailed analysis of individual carrier signals while capturing a base duty cycle.

Gate driving waveform of the U, V, and W phases on the high side of a 3-phase inverter.

A fundamental duty cycle (16ms on the sample screen) can be captured at a rate of $1 G S / s$.

View with zoom display.

Up to 24 CH at a high voltage and wide bandwidth can be simultaneously measured.

Waveform monitoring and other system operations are remotely performed using the standard IS Viewer (software) The IS Viewer can be used off-line as well, and is therefore useful for data organization at locations remote from the measurement site.

The many operation functions provided by the IS Viewer facilitate power loss and other measurement.

The Vce, Ic, output voltage and current waveforms of the upper and lower arms of an inverter can be simultaneously measured. dv/dt, di/dt, and other parameters, such as power loss, can be easily calculated from the measurement waveforms.

Functions of the IS viewer (DM-800)

Multi-channel floating measurements (simultaneous measurement example of the upper and lower arms of a 3-phase inverter)

System configuration

IGBT Gate voltage measurements in the high-side switch of a single phase inverter (one unit)

IGBT Vce voltage measurements in the high-side switch of single phase inverters (four units)

IGBT Vce voltage \& Ic current measurements of 3-phase, 2-level inverters (twelve units)

Isolation measurement system

Isolation System DM-8000H Specifications
DM-900L/DM-910L Isolation Unit and DM-400/L Acquisition Unit

Model	DM-900	DM-900L	DM-910	DM-910L	DM-400	DM-400L
Signal input unit						
Frequency Bandwidth (-3 dB)	500MHz					
Bandwidth limiter	$20 \mathrm{MHz} / 100 \mathrm{MHz}$					
Input impedance	$1 \mathrm{M} \Omega / / 16 \mathrm{FF}$				$1 \mathrm{M} \Omega / / 16 p \mathrm{~F}$ or 50Ω	
Maximum input voltage	400V max (DC+peakAC<=5kHz) CAT I					
Number of channels	2 (between channels are not isolated)		1		2 (Not isolated)	
Input coupling	GND, DC1M Ω, AC1M Ω		GND, DC1M Ω		GND, DC1M Ω, AC1M Ω, DC50 Ω	
Input sensitivity	2mV/div $10 \mathrm{~V} / \mathrm{div}, 1-2-5$ steps		CH1-MAIN: 50mV/div \sim V/div, 1-2-5 steps CH2-ZOOM: 2mV/div~V/div, 1-2-5 steps		2mV/div $10 \mathrm{~V} / \mathrm{div}, 1-2-5$ steps	
Offset range	$2 \mathrm{mV} / \mathrm{div} \sim 50 \mathrm{mV} / \mathrm{div}, \pm 1 \mathrm{~V}$ *1 $100 \mathrm{mV} / \mathrm{div} \sim 500 \mathrm{mV} / \mathrm{div}, \pm 10 \mathrm{~V} *$ $1 \mathrm{~V} / \mathrm{div} \sim 10 \mathrm{~V} / \mathrm{div}, \pm 100 \mathrm{~V} * 3$		$\begin{aligned} & \text { CH1-MAIN: 50mV/div } 500 \mathrm{mV} / \mathrm{div}, \pm 10 \mathrm{~V} *{ }^{* 2} \\ & \text { 1V/div } \sim \mathrm{V} / \mathrm{div}, \pm 100 \mathrm{~V} * 3 \\ & \text { CH2-Z00M: } 2 \mathrm{mV} / \mathrm{div} \sim 2 \mathrm{mV} / \mathrm{div}, \pm 2 \mathrm{~V} * 1 \\ & 50 \mathrm{mV} / \mathrm{div} \sim \mathrm{~V} / \mathrm{div}, \pm 20 \mathrm{~V} * 2 \end{aligned}$		$\begin{gathered} \text { 2mV/div~50mV/div, } \pm 1 \mathrm{~V} * 1 \\ 100 \mathrm{mV} / \mathrm{div} \sim 500 \mathrm{mV} / \mathrm{div}, \pm 10 \mathrm{*} * 2 \\ 1 \mathrm{~V} / \mathrm{div} \sim 10 \mathrm{~V} / \mathrm{div}, \pm 100 \mathrm{*} * 3 \end{gathered}$	
Offset accuracy	$\pm\left(1.0 \%+0.5 \%\right.$ of full-scale + X X X:*1 $1 \mathrm{mV},{ }^{* 2} 10 \mathrm{mV},{ }^{* 3} 100 \mathrm{mV}$					
DC gain accuracy	\pm (1.5\% + 0.5\% of full-scale)					
Probe sensitivity	10:1, 100:1, 1000:1 (Auto detection/manual settings)					
Sample rate	1GS/s (2GS/s during interleave)					
Vertical axis resolution	8bits					
Maximum memory length	500k points/ch	16M points/ch	500k points/ch	16M points/ch	500k points/ch	16M points/ch

Trigger sources	CH1, CH2	CH-1-MAIN	CH1, CH2
Trigger slope	Positive / Negative		
Coupling	AC, DC, HFREJ, LFREJ		
Level range	125\% of full-scale		
Interface			
Interface	1 set of 3 optical interfaces (optical fiber cable: 2 m to 200m)		1 set of electrical interfaces (wire cable:2 or 5m)
Power supply and battery unit			
Internal battery	3 battery packs (unit can operate on one battery)		-
Battery charging	Can be charged by the main unit		-
Power consumption	120VAmax (when using AC power)		40VAmax
Battery operation time	Approx. 12 hours of continuous operation (when using 3 batteries)		-
Battery charging time	Approx. 6 hours		-
AC power supply	AC100 to 240 (50/60Hz)		
Calibration signal			
Calibration signal	$0.6 \mathrm{~V} / 6 \mathrm{~V}$ (selectable)		
Mechanical unit			
Dimensions (mm)	122.4 (H) X 258.4 (W) $\times 544$ (D)		96.4 (H) X 171.6 (W) X 322.6 (D)
Weight	Approx. 7kg (excluding battery packs and accessories	Battery pack weight: Approx. 660g per pack	2.6 kg
Operating temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$		
Performance guaranteed temperature	$+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$		
Accessories			
Battery pack	3		-
Power supply cable	1		

DM-8000H Main Unit

Trigger system

Mode	Auto,Normal,Single,Stop
Source	Up to 24 CH
Type	Edge,Pulse width
Trigger delay	Available
Interface	
Ethernet port	1000BASE-T $\times 3$
Power supply unit	
AC power supply	100 V to 240V ($50 / 60 \mathrm{~Hz}$)
Power consumption	130VA max

Mechanical unit

Dimensions (mm) and weight	$132(\mathrm{H}) \times 351(\mathrm{~W}) \times 420(\mathrm{D})$, Available. 6.9 kg
Operating temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Performance guaranteed temperature	$+10^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$

Accessories

LaN cable	1
Power supply cable	1
Operation manual	CD-R(1)
Control software	IS Viewer DM-800 CD-R (1)

Note \#1: Intel and Pentium are registered trademarks or trademarks of Intel Corporation and its subsidiary companies in the United States of America and other countries.
Note \#2: Windows is a registered trademark or trademark of Microsoft Corporation in the United States of America and other countries

DM-600/DM-620/DM-630 Transceiver Card

Number of isolation $/$ acquisition units connected	$\mathrm{DM}-600: 2(\mathrm{DM}-900 / \mathrm{L}, \mathrm{DM}-910 / \mathrm{L})$
	$\mathrm{DM}-620: 1$
	DM-630: 2 (DM-900/L, DM-900/L)
Operation indicator +1 (DM-400/L)	
Mechanism	Status display via LED
Operating temperature	Card inserted in main unit (DM-8000H)
Performance guaranteed temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$

IS Viewer DM-800
(supplied with the DM-8000H main unit)
*IS Viewer is installed in the controlling computer (option) and is used to operate the isolation system and to monitor waveforms.
Main function

Operations	+, -, $\mathrm{x}, \div,\|\mathrm{x}\|,\|\div\|, \int, d y / d x$
Parameter measurements	Max, Min, p-p, Top, Base, Top-Base, RMS, Cycle RMS, Mean, Cycle Mean, +/-Overshoot, Transition Time, dv/dt, Freq, Period, t/-Pulse Count, +/-Pulse Width, Duty, Integral, Integral (abs), Integral (pos), Integral (neg), Skew (\%), Skew (Level)
Other functions	XY display, FFT, Cursor, smoothing, channel de-skew, re-scale, off-line viewer
Waveform storage	CSV
Saving images	BMP,PNG, Clipboard
Saving setups	with / without waveforms
Controlling computer	
CPU	Intel ${ }^{8}$ Pentium ${ }^{8} 4$ Processor or later ${ }^{\text {lote } \text { +1 }}$
RAM	2GB or larger
OS	Windows ${ }^{8}$ XP Professional SP3 ${ }^{\text {WWeie +2 }}$
	Windows ${ }^{8}$ Vista Business SP2 ${ }^{\text {Wbate }}$ +2
Display	At least WXGA (1,280 x 768 pixels) recommended (SXGA (1,280 x 1,024 pixels) is required for full display.)

ISOLATION PROBE

ISOLATION AMP (Receiving side) ISOLATION UNIT (Sending side) SE-6000 SE-6010

Performs waveform measurements with high resolutions and in safe manner

 under high voltage environment in systems that isolate output terminals through optical insulation

- Contributes to the safety for the high voltage environment tests
- Increases measurement quality with differential probes
- Measures noise resistance very effectively
- Supports wide range of objects such as lightning surge and charging tests and etc.
- Measures Distant points (Switches, Transportation equipment and etc.)
- Analyzes failure factors when multiple abnormal operations happened at the distant places (The Isolation unit can be set at each place, up to 4 sets in total)

High-voltage transformer

ISOLATION AMP (Receiving side) Specifications

Number of channels	1
Frequency range (-3dB)	30MHz (Input to Unit ~ Output from AMP)
Input impedance	1M $\Omega / / 20 \mathrm{pF}$
Input coupling	DC, AC, GND
Input range (Full scale)	$\begin{aligned} & \text { at output range } \pm 1 \mathrm{~V}(50-\mathrm{ohm}), \pm 2 \mathrm{~V}(1 \mathrm{M}-\mathrm{ohm}) \\ & \pm 50 \mathrm{mV}, \pm 10 \mathrm{mV}, \pm 200 \mathrm{mV}, \pm 500 \mathrm{mV}, \pm \mathrm{VV}, \pm 2 \mathrm{~V}, \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 20 \mathrm{~V}, \pm 50 \mathrm{~V} \\ & \text { at output range } \pm 0.8 \mathrm{~V}(50-\mathrm{ohm}), \pm 1.6 \mathrm{~V}(1 \mathrm{M}-\mathrm{hm}) \\ & \pm 40 \mathrm{mV}, \pm 80 \mathrm{mV}, \pm 200 \mathrm{mV}, \pm 40 \mathrm{mV}, \pm 800 \mathrm{mV}, \pm 2 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 8 \mathrm{~V}, \pm 20 \mathrm{~V}, \pm 40 \mathrm{~V} \end{aligned}$
Functions	Offset variable, Probe sense, Auto range, Self Cal. (Controlled from the SE-6000 [Receiving side])
Operation time	Battery 1pce: 12 hours Battery 2pces: 24 hours *1 pce equipped as standard

ISOLATION AMP (Receiving side) Specifications

Number of channels	4
DAC	14bit $100 \mathrm{MS} / \mathrm{s}$
Output voltage (Impedance)	$\pm 1 \mathrm{~V}$ (50-ohm load), $\pm 2 \mathrm{~V}$ (1M-ohm load) In DSO mode: $\pm 800 \mathrm{mV}$ (50-ohm load), $\pm 1.6 \mathrm{~V}$ (1M-ohm load)
Monitor display	4.3 " Color LCD back light: : Select High / Low for display and selection of setting conditions of the SE-6010 (ISOLATION UNIT)
	Range, Offset auto detection
Auto range	Input (Optical I/F Connector)
Twin LC connector $\times 4$	
Output	BNC $\times 4$
Power Source	AC100 to 240V (50/60Hz)

Model Name		Model Number
Optical fiber cable	3 m	SE-605
	10 m	SE-606
	50 m	SE-607
	200 m	Custom order

High Voltage Differential Probe

Attenuation Ratio(switchable)	Input voltage	50:1	100:1	250:1	500:1
Bandwidth(-3dB) Rise time($10 \%-90 \%$)	50 V	300MHz 1.2ns	$\begin{gathered} 300 \mathrm{MHz} \\ 1.2 \mathrm{~ns} \end{gathered}$	$\begin{aligned} & 400 \mathrm{MHz} \\ & 0.875 \mathrm{~ns} \end{aligned}$	400 MHz 0.875 ns
	500 V	-	-	300MHz 1.2ns	$\begin{aligned} & 300 \mathrm{MHz} \\ & 1.2 \mathrm{~ns} \end{aligned}$
	1,000V	-	-	-	300 MHz 1.2ns
RMS Noise level (Broadband noise at 30MHz bandwidth)		55 mV	55 mV	75 mV	75 mV
Typical Propagation Delay		10 ns			
Max. Common Mode Voltage		$\pm 2,000 \mathrm{~V} \mathrm{pk}(\pm 1,400 \mathrm{~V} \mathrm{rms})$			
Max. Input Voltage	Category I	2,000V eff. 6,000V transient Overvoltage			
Measurement category (IEC61010-031)	Category III	1,000V CATIII			
Max. Input Voltage		$\pm 200 \mathrm{~V}$ DC	$\pm 400 \mathrm{~V}$ DC	$\pm 1,000 \mathrm{~V}$ DC	$\pm 2,000 \mathrm{~V}$ DC
Common Mode Voltage		$\pm 1,400 \mathrm{Vpk}(\pm 1,000 \mathrm{Vrms})$			
DC Gain accuracy		$\pm 0.7 \%$	$\pm 0.7 \%$	$\pm 0.35 \%$	$\pm 0.35 \%$
Offset Range 1)		$\pm 4 \mathrm{~V}$			
Offset Resolution 1)		15 Bits / Minimum Step<125 $\mu \mathrm{V}$			
Offset Drift 1)		$150 \mu \mathrm{~V} /{ }^{\prime} \mathrm{C}$	$150 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	$40 \mu \mathrm{~V} / \mathrm{C}$	$40 \mu \mathrm{~V} / \mathrm{C}$
Input impedance at each input to GND		$5 \mathrm{M} \Omega / / 4 \mathrm{pF}$			
Input impedance at differential inputs		$10 \mathrm{M} \Omega / / 2 \mathrm{pF}$			
Input coupling of the measuring instrument		50Ω			
Commonmode rejection ratio (typ. CMRR)	DC	$>80 \mathrm{~dB}$			
	100kHz	$>70 \mathrm{~dB}$			
	1 MHz	$>62 \mathrm{~dB}$			
	3.2 MHz	$>50 \mathrm{~dB}$			
Weight	370g				
Cable length		2 m			
Input Leads Length		25 cm			
Input Leads Connectors		$2 \mathrm{~mm} \times 4 \mathrm{~mm}$ (male)			
Output Connectors		BNC(male)			
Operating temperature range		$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$			
Temperature range for probe input leads		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			
Power supply units(Optional)		PS-02(2CH), PS-03(4CH)			

1) Referred to Output

Bumble Beeß is registered trademark in Germany of PMK GmbH.

Freq. BW	$D C$ to 100 MHz
Maximum differential input voltage (DC+AC peak)	$\pm 140 \mathrm{~V}(50: 1) / \pm 1.4 \mathrm{kV}(500: 1)$
CMRR(70dB)	500 V DC
CMRR(80dB)	$50 / 60 \mathrm{~Hz}$
CMRR(50dB)	1 MHz
Input impedance	$1 \mathrm{M} \Omega$
Input impedance at each input to GND	$4 \mathrm{M} \Omega / / 7.0 \mathrm{opF}$
Input impedance at differential input	$8 \mathrm{M} \Omega / / 3.5 \mathrm{FF}$
Cable length	1.5 m
Power supply unit (optional)	PS-25(External) / DS-579

High Voltage Passive Probes

RMS vs. Peak Pulse Voltage PHV 1000-RO

Maximum Pulse Derating PHV 1000-RO

PHV6xx
PHVS6xx
PMK.

PHV4002

Model	Attenuation	linput RC		BW(MHz at -30 B)	Max. Input Voltage(kV)			Comp. Range [pF]	Cable length
		R[MM,	C[pF]		CAT II AC rms	VDC Incl. pk AC	Impulse Peak		
PHV641-LRO	100:1	50	<6	380	2	3	4	10-50	1.2 m
PHV642-LRO			<6.5	300					2.0 m
PHV643-LRO			<7	150				15-55	3.0m
PHV661-LRO	100:1	50	<6	380	2.8	4	6	10-50	1.2 m
PHV662-LRO			<6.5	300					2.0 m
PHV663-LRO			<7	150				15-55	3.0m
PHVS662-LRO	1000:1	50	<6.5	400	2.8	4	6	10-50	2.0 m
PHVS663-LRO			<7	250				15-55	3.0m
PHV4002-3-RO	1000:1	100	<2.5	100	14	20	40	10-50	3.0m
PHV4002-5-RO				-					
PHV4002-8-RO				-					
PHV4002-10-R0				10					

Passive Probes

Model	Attenuation	Input Impedance	System bandwidth(-3dB)	scope input capacity
SS-101R	10:1	10M $\Omega / 12 \mathrm{pF}$	500 MHz	13 to 23pF
SS-0130R	10:1	$10 \mathrm{M} \Omega / 12.5 p \mathrm{~F}$	200 MHz	18 to 35pF
SS-0122	10:1	$10 \mathrm{M} \Omega / 14 \mathrm{pF}$	100 MHz	$10-32 p F$
	1:1	$1 \mathrm{M} \Omega /<150 \mathrm{pF}$	6 MHz	
SS-0112	10:1	10M $\Omega / 22 \mathrm{pF}$	60MHz	$10-45 p F$
	1:1	$1 \mathrm{M} \Omega /<200 \mathrm{pF}$	6 MHz	
SS.0004	1:1	$44 \mathrm{pF} \pm 6 \mathrm{FF}$	30 MHz	

SS-0170R/ SS-0171R

HV-P30

Model	Attenuation	Input RC		System Bandwidth [MHz] (-30B)	Cable Length [m]	Comp. Range [pF]	Max. Input Voltage [kV]	
		R[MQ]	C[pF]				CAT II DCtACpeak	CAT I DCtACpeak
SS-0171R	100:1	66.7	<4	400	2.0	6-18	1.0	4.0
SS-0170R	100:1	66.7	<4	400	2.0	6-18	1.0	6.0
HV-P30	1000:1	100	<7	50	3.0	15-50	30	
HV-P60	2000:1	1,000	<7	50	4.0	20-50	60	

Pair Probes

PMK.

Model	Attenuation	Input RC		System Bandwidth [WHz] (-3aB)	Cable Length$[\mathrm{m}]$	Comp. Range [pF]	Max. Input Voltage [KV]		
		R[MQ]	C [pF]				CAT II AC rms	VDC Inc.i.jkA	Impuls
PDD4161-L	100:1	50	<6	380	1.2	10-50	2.8	4.0	6.0
PDD4162-L	100:1	50	<6.5	300	2.0	10-50	2.8	4.0	6.0
PDD4163-L	100:1	50	<7	150	3.0	15-55	2.8	4.0	6.0
PDDS4962-L	1000:1	50	<6	400	2.0	10-50	2.0	3.0	4.0
PDDS4963-L	1000:1	50	<6.5	250	3.0	10-50	2.0	3.0	4.0
PDD4002-3	1000:1	100	<2.5	100	3.0	10-50	14	20	40

Pair passive probes are paired of their performance for dynamic tests.

Current Probes

CLAMP TYPE CURRENT PROBE

SS-270
ROGOWSKI COIL CURRENT PROBE Lineup

Model	Maximum input current	Frequency bandwidth	Measurable wire diameter(max.)	
$S S-240 \mathrm{~A}$	30 Arms	50 Apk	$\mathrm{DC}-50 \mathrm{MHz}$	5 mm
$S S-250$	30 Arms	50 Apk	$\mathrm{DC}-100 \mathrm{MHz}$	5 mm
$S S-260$	150 Arms	300 Apk	$\mathrm{DC}-10 \mathrm{MHz}$	20 mm
$S S-270$	500 Arms	$700 A p k$	$D C-2 \mathrm{MHz}$	20 mm

- High current 12 kApk , Withstanding voltage 12 kV max.
- Zero adjust function

Model	Peak Current	Max. Withstanding Voltage	Bandwidth (-30B)	Sensor	$\begin{aligned} & \text { Cut-off } \\ & \text { frequency } \end{aligned}$	Sensitivity at mV/A	Noise level at mV rms	di/dt kA/us
55-2935		10kV	20MHz	Cable length at 3meters	To be specified.			
SS-293L	1,200A		10 MHz					
5S-2945			20MHz					
SS-294L	3,000		10 MHz					
SS-2955	6,000A		20 MHz					
SS-295L			10 MHz					
SS-2965	12,000A		20 MHz					
SS-296L			10MHz					
SS-281A	30A	1,2kV	30 MHz	Cable length at $1.5 m e t e r s$ Operation temperature at -40deg. to 125deg.	110Hz	200	3.5	2
SS-282A	60A				65Hz	100	2.5	4
SS-283A	120A				32 Hz	50	2	8
5S-284A	300A				9 Hz	20	1.8	20
5S-285A	600A				6 Hz	10		40
SS-286A	1,200A				3 Hz	5		80
SS-287A	3,000A				To be specified.			

High voltage Probe Calibrators

 100V, 100Hz

Probing tools for Flat package (Ultra-mini clips)

High voltage Probe Calibrators

3-D Probe Positioners

3D Positioners

Digital Multimeter

6½ Digits Digital Multimeter VOAC7602

User-friendly Operability

IIluminated when necessary The input of numerals, characters and symbols, and list selection needed for parameter settings can be carried out speedily and directly. Simple rotate and push the knobs to set the parameters.

Arrow keys

These keys are used to move the cursor for numerical and character input. They can also be used for switching between the primary display of numerals, trend charts and histogram charts, etc., and the secondary displays of statistics and analog meters, etc.

Display

Easy-to-see Large Screen
Equipped with a high-resolution, wide color LCD display. The display is bright and provides a wider field of view, which becomes apparent the more it is used. The font used for the digits can be selected from normal (gothic) type and seven segment type. It is also possible to choose the background color from two colors (white and black).

4.3-inch highresolution
 LCD monitor 109 mm

Black background mode : *The font for the numerical display is selected with NORMAL(gothic) on DISPLAY.

New displays that make even better use of the judgment function

A larger screen for enhanced legibility

It is now possible to see

Unique needle meters. Pseudo analog-like fluctuations are displayed digitally

In addition to the convenience of making estimated judgments, it is now possible to use combinations of the judgment function in a wide range of ways.
The color of the needle changes when the reading exceeds the judgment standards.

A myriad of analyses can now be carried out without the use of a PC. Performance and functionality levels without selecting fields enhance work quality. The VOAC7602 is equipped with a wide range of new functions, including trend chart and histogram chart displays and enhanced analysis accuracy through 30k sampling/s, which exceeds expectations for normal DMMs.

A myriad of analyses display combinations are now possible without the use of a PC

The primary display consists of several displays, including the numerical display, the trend charts, the histogram charts and the arc scale meter, and a secondary display to provide a wealth of information related to each of the primary displays is also available. A wide range of screen combinations can therefore be selected in alignment with measurement requirements.

Accurate Sampling Rates Now Possible with the Bulk Mode. This contributes greatly to improved analysis accuracy

A dedicated acquisition mode was added to enable 30k sampling/s. (DCV, DCI, $2 \mathrm{~W} \Omega$ and $4 \mathrm{~W} \Omega$ with $51 / 2$ digit displays) This has greatly improved the time resolution to load data, and is useful for transferring data across to other new DMM applications.

Sampling Rate Comparison

A comparison of data acquired with 1 k sampling/s and 30k sampling/s using the same signals in the bulk mode.

Trend

30k sampling/s

1k sampling/s

Bulk mode

The bulk mode is a mode that concentrates only on acquiring measurement data. Accurate sampling rates up to a maximum of 30 k sampling/s are guaranteed when the display of measurement data on the screen is switched off during data acquisition. The measurement data is stored in bulk in the log memory, and can be used for displaying trends and histograms with the use of the offline browser function. Data can also be saved onto USB memories.

Logging is Possible for Long Periods of Time with Long Memory
Equipped with a data size equivalent to 100k points of data to supports extended logging periods.
Example: Logging exceeding one full day is possible at a sampling speed of one per second.

$\begin{aligned} & \begin{array}{l} \text { Sampling Rate } \\ \text { (Sampling/s) } \end{array} \\ & \hline \end{aligned}$	1	4	20	100	500	1k	2k	7.5k	15k	30k
Loading Time (HH:MM:SS)	27:46:40	6:56:40	1:23:20	0:16:40	0:03:20	0:01:40	0:00:50	0:00:13	0:00:07	0:00:03

Using this in combination with the trigger function's interval setting will enable parameters that are longer than the sampling cycle to be set (0 to 3,600 seconds), and even longer logging times can be obtained by setting the interval at one second or longer.

Offline Browser Function Equipped with a Powerful Cursor

Offline Histogram Chart Display Useful for Measurement Yields

The data loaded into the log memory is displayed in a histogram so that the yields can be easily measured with the cursor.
This function is conventionally carried out through PC analyses, but allowing judgment to be performed where the work is being carried out drastically improves work efficiency.

Off-line Trend Charts for Displaying the Time-

 Based Fluctuations in MeasurementsIn addition to an oscilloscope-like display, it is possible to recalculate the statistics within the range of the cursor to acquire statistical data within required ranges. It is also possible to perform this while copying the screens into the USB memory, which is very useful for improving work efficiency even further.

Vastly Upgraded Judgment Function

The VOAC7602 is capable of performing high-grade analyses based on the results of LIMIT judgment. The main feature here is the simple operations. The unit answers the questions that trouble operators, such as the number of defects occurring and the Date \& Time of Occurrence.

"Occurrence Rate" Solution Screen

VOAC7602 Specifications

ADC method		$\Delta \Sigma$ ADC system			
Measurement Mode					
Trigger Setting		AUTO / SINGLE (Switching)			
Range		Selected from AUTO RANGE/MANUAL RANGE			
Auto Range		Range increased over "1199999", and range decreased below "100000".			
Screen		LCD			
Size		4.3-inch			
Dot Count		480 dots $\times 272$ dots			
Color		16bit, 65,536 colors			
Drive System		TFT active matrix			
Backlight		LED			
Sampling Rate					
DC Range ($\mathrm{DCV}, \mathrm{DCI}, 2 \mathrm{~W} \Omega, 4 \mathrm{~S}$)					
Power Supply Frequency: 50Hz		Power Supply Frequency: 60 Hz		Display Digits	Remarks
$\begin{gathered} \text { Sampling } \\ \text { Rate* }(\text { S/s }) \\ \text { Screen Display } \end{gathered}$	PLC Converted Value *2	$\begin{gathered} \text { Sampling } \\ \text { Rate*'(s/s) } \\ \text { Screen Display } \\ \hline \end{gathered}$	PLC Converted Value ${ }^{* 2}$		
2.5(1)	20	2.5(1)	24	61/2digits	Figures within () are with AUTOZERO set at ON or during 4W Ω
10(4)	5	10(4)	6		
50(20)	1	60(20)	1		
100	0.5	100	0.6	$\begin{gathered} 5 / 2 \\ \text { digits } \end{gathered}$	Cannot be selected during 4W Ω
500	0.1	500	0.12		
1 k	0.05	1k	0.06		
2 k	25m	2 k	30m		
7.5k	6.67 m	7.5k	8 m		
15k	3.33m	15k	4 m		
30k	1.67m	30k	2 m		

*1. The sampling rate is only guaranteed when loading data with the logging function MODE set at the BULK mode.
*2. PLC Converted Value: Value equivalent to the sampling cycle/power source cycle
AC Range (ACV, ACI)

AC Filter	Sampling Rate		$\begin{gathered} \hline \text { Display } \\ \text { Digits } \end{gathered}$	$\begin{gathered} \text { Response } \\ \text { Time } \end{gathered}$
	Power Supply Frequency: 50Hz	Power Supply Frequency: 60Hz		
MID	2.55/5 (20PLC)	2.55/5 (24PLC)	$\begin{gathered} \hline 1 / 2 \\ \text { digits } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Within } \\ 3 \text { seconds } \end{gathered}$
HIGH	2.55/5 (20PLC)	2.55/5 (24PLC)	$\begin{gathered} \text { 61/2 } \\ \text { digits } \end{gathered}$	$\begin{aligned} & \text { Within } \\ & 2 \text { seconds } \end{aligned}$
	10S/s (5PLC)	10S/5 (6PLC)		
	50S/5 (1PLC)	$60 / 5$ (1PLC)		

Response time** Time for accurate measurement at each range

Interface	
USB2.0	Equipped as standard
LAN \& RS-232	SC-361 (factory option)
GPIB	SC-363 (factory option)
DIO	SC-362 (factory option)
Rear Panel I/O (BNC and DIO)	
Trigger Input (BNC)	
Level	H:2.2.VVmin, L: :0.9Vmax
Input Impedance	Approx. 10k Ω
Polarity	Selection possible for both edges
Pulse Width	$1 \mu s$ or more
Default Delay	Less than $1 \mu \mathrm{~s}$
COMPLETE output (BNC)	
Level	H:2.24Vmin, L: : O.4Vmax
Output Impedance	Approx. 1k Ω
Polarity	Positive logic
Output When LIMIT Judgment is OFF	$10 \mu \mathrm{~s}$
Pulse Width When LIMIT Judgment is ON	4.0ms or more
Trigger INHHBIT Input (DIO Option)	
Level	H:2.24Vmin, L::0.3Vmax
Input Impedance	Approx. 5k Ω
Polarity	POSITIVE (Positive Logic Operations)/NEGATVE (Negative Logic Operations)
LIMIT Judgment Output (DIO Option)	COMPLETE, GO, HI, LO Only output when LIMIT judgment is at ON and DIO output is at ON .
Withstand Voltage Between Terminals	50V
Maximum Permissible Current	100 mA
Signal Timing COMPLETE	
GO/H/LO	Judgment Result

[^3]| Storage Temperature and Humidity | $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ (less than 90% or equivalent moisture at $40^{\circ} \mathrm{C}$. No Condensation) |
| :---: | :---: |
| Power Supply | AC100V/110V/220V/240V $\pm 10 \%, 50 \mathrm{~Hz} / 6 \mathrm{~Hz}$
 All supplies with the exception of AC100V are optional (factory option) |
| Power Consumption | 21VA or less (including options) |
| Withstand Voltage | $D C \pm 500 \mathrm{~V}$ (between input terminals for all front panel measurements and the earth) |
| Installation (Over-Voltage) Category | Category I (Local level, Electrical appliances, Portable appliances) |
| Contamination Level | Contamination level 2 *Must not be used in environments containing conductive contamination. |
| External Dimensions | $225 \mathrm{~W} \times 100 \mathrm{H} \times 366 \mathrm{D} \mathrm{mm}$ (excluding the legs, handle, knobs and other protruding components) |
| Weight | Approx. 3.0kg (including the protector option.) |
| Expected Life Span | |
| LCD | LED backlight brightness reduced by half atter Approx. 70,000 hours |
| Relays | Approx. 100,000 times (Maximum load with 1,000V applied)
 Approx. 10 million times (under normal usage conditions without excessive load) |
| Data Backup Battery | 5 years |

2. Standard Measurement Function Performance

Performance levels hereinatter depend on the following conditions and definitions.
Temperature/Humidity: $23 \pm 5^{\circ} \mathrm{C}, 80 \% \mathrm{RH}$ or less. Accuracy for one year: \pm (\% of reading $+\%$ of range)
Response Time: Time for accurate measurement at each range
2-1. Direct Current Voltage Measurements (DCV)
2-1-1. Accuracy and Resolution Unit: \pm (\% of reading $+\%$ of range)

Range	$\begin{array}{\|c\|} \hline \text { Full Scale } \\ \text { when } 61 / 2 \text { Digits } \end{array}$ in Use	Resolution	$\begin{gathered} \text { Accuracy } \pm \\ \text { (\% of reading }+\% \\ \text { of range) } \end{gathered}$	Temperature Coefficient \pm (\% of reading $+\%$ of range) $/{ }^{\circ} \mathrm{C}$	Input Impedance
100mV	119.9999	$0.1 \mu \mathrm{~V}$	$0.0050+0.0035$	$0.0005+0.0005$	$1 G \Omega$ or more, or $10 \mathrm{M} \Omega \pm 1 \%$
1 V	1.199999	$1 \mu \mathrm{~V}$	$0.0040+0.0007$	$0.0005+0.0001$	
10V	11.99999	$10 \mu \mathrm{~V}$	$0.0035+0.0005$		
100 V	119.9999	0.1 mV	$0.0045+0.0006$		
1000V	1100.000	1 mV	$0.0045+0.0010$		10M $2 \pm 1 \%$

- Sampling Rate: $15 / \mathrm{s}$
- Maximum Permissible Voltage

100 mV to 100 V Range: 800 V peak (continuous), 1100Vpeak (for 1 minute)
1000V Range: $\pm 1100 \mathrm{Vpeak}$ (continuous)

- Response Time: within 1 second

2-1-2. Noise Reduction

PLC	NMRR $50 \mathrm{~Hz} / 6 \mathrm{OHz} \pm 0.1 \%$	CMRR $50 \mathrm{~Hz} / 6 \mathrm{~Hz} \pm 0.1 \%$ Unbalance Resistance $1 \mathrm{k} \Omega$
Integral Multiple for 1 PLC	55dB	120 dB
Other than the above	OdB	-

* 50Hz/60Hz: Electrical Power Frequency

2-2. Alternating Current Voltage Measurements (ACV)
2-2-1. Resolution and Measurement Range Actual Effective Value Detection Crest Factor: <5

Range	Full Scale	Resolution	Measurement Range		Input Impedance
			MID	HIGH	
100 mV	119.9999	$0.1 \mu \mathrm{~V}$	20Hz-300kHz	200Hz-300kHz	$\begin{aligned} & \text { Approx. } \\ & 1 \mathrm{M} \Omega / / 100 \mathrm{pF} \text { or } \\ & \text { less } \end{aligned}$
1 V	1.199999	$1 \mu \mathrm{~V}$			
10V	11.99999	$10 \mu \mathrm{~V}$			
100 V	119.9999	0.1 mV			
750V	750.000	1 mV	20Hz-100kHz	200Hz-100kHz	

2-2-2. Accuracy
Rated at 5% to 100% for each range Unit: \pm (\% of reading $+\%$ of range)

Range	Frequency	Accuracy	Temperature Coefificient
100.0000 mV	2 OHz to 45Hz	$0.70+0.04$	$0.070+0.004$
	$45 \mathrm{~Hz} \mathrm{to} \mathrm{100Hz}$	$0.20+0.04$	$0.020+0.004$
	$100 \mathrm{~Hz} \mathrm{to} \mathrm{20kHz}$	$0.06+0.04$	$0.005+0.004$
	20kHz to 50kHz	$0.12+0.05$	$0.011+0.005$
	50kHz to 100kHz	$0.60+0.08$	$0.060+0.008$
	100kHz to 300kHz	$4.00+0.50$	$0.200+0.020$
1.000000 V to 750.000 V	$2 \mathrm{OHz} \mathrm{to} \mathrm{45Hz}$	$0.70+0.03$	$0.070+0.003$
	45 Hz to 100 Hz	$0.20+0.03$	$0.020+0.003$
	100 Hz to 20kHz	$0.06+0.03$	$0.005+0.003$
	20kHz to 50kHz	$0.11+0.05$	$0.011+0.005$
	50kHz to 100kHz	$0.60+0.08$	$0.060+0.008$
	100kHz to 300kHz	$4.00+0.50$	$0.200+0.020$

- Sine Wave Reliability.
- The maximum permissible voltage is 750 Vrms or 1100 V peak, but the DC component is $\pm 500 \mathrm{~V}$ or less.
- The 750 V range is restricted to 100 kHz or $8 \times 10^{7}[\mathrm{~V} / \mathrm{Hz}]$.

The Crest Factor (CF) is guaranteed to either 5 during Full Scale input or the maximum input voltage, whichever is smaller.

2-2-3. Additional Margin of Error Caused by AC Filter Settings
Unit: \pm (\% of reading)

AC Filter	20 Hz to 40 Hz	40 Hz to 100 Hz	100 Hz to 200Hz	200 Hz to 1kHz	Exceeds 1kHz
MID	0.22	0.06	0.01	0	0
HIGH		0.73	0.22	0.18	0

2-2-4. Additional Margin of Error Caused by the Crest Factor

Crest Factor	Unit: \pm (\% of reading)
$1-2$	0.05
$2-3$	0.15
$3-4$	0.30
$4-5$	0.40

- Frequency: 20 Hz to 300 kHz .

2-3. Direct Current Measurements (DCI)
2-3-1. Accuracy and Resolution Unit: \pm (\% of reading $+\%$ of range)

Range	Full Scale when 6.5 Digits in Use	Resolution	Accuracy	Temperature Coefficient	Shunt Resistance
1 mA	1.199999	1 nA	$0.050+0.006$	$0.0020+0.0050$	90Ω
10 mA	11.99999	10 A A	$0.050+0.020$	$0.0020+0.0020$	5Ω
100 mA	119.9999	100 nA	$0.050+0.005$	$0.0020+0.0005$	5Ω
1 A	1.199999	$1 \mu \mathrm{~A}$	$0.100+0.010$	$0.0050+0.0010$	0.1Ω
3 A	3.00000	$10 \mu \mathrm{~A}$	$0.120+0.020$	$0.0050+0.0020$	0.1Ω

- Resolution: $61 / 2$ digits status applied.
- Maximum Permissible Current All Ranges: 3 Adc or 3 Arms (Guaranteed with continual and 3A fuse)

2-4. Alternating Current Measurements (ACI)
2-4-1. Resolution and Measurement Range Actual Effective Value Detection Crest Factor: <5

Range	Full Scale	Resolution	Measurement Range		Shunt Resistance
			20 Hz to 5 kHz	200 Hz to 5 kHz	0.1Ω
3 A	3.00000	$10 \mu \mathrm{~A}$			

2-4-2. Accuracy

Rated at 5% to 100% for each range.
Unit: \pm (\% of reading $+\%$ of range)

Range	Frequency	Accuracy	Temperature Coefficient
1 A	20 Hz to 45 Hz	$0.70+0.04$	$0.100+0.006$
	45 Hz to 100 Hz	$0.30+0.04$	$0.035+0.006$
	100 Hz to 5 KHz	$0.10+0.04$	$0.015+0.006$
	20 Hz to 45 Hz	$0.70+0.06$	$0.100+0.006$
	45 Hz to 100 Hz	$0.35+0.06$	$0.035+0.006$
	100 Hz to 5 KHz	$0.15+0.06$	$0.015+0.006$

- Sine Wave Accuracy.
- Maximum Permissible Current All Ranges: 3 Arms (Guaranteed with continual and 3A fuse)
2-4-3. Additional Margin of Error Caused by AC Filter Settings

AC Filter	20Hz to 40Hz	40Hz to 100 Hz	100 Hz to 200Hz	200Hz to 1 kHz	Exceeds 1 kHz
MID	0.22	0.06	0.01	0	0
HIGH		0.73	0.22	0.18	

2-4-4. Additional Margin of Error Caused by the Crest Factor

Unit: \pm (\% of reading)

Crest Factor	Additional Margin of Error
$1-2$	0.05
$2-3$	0.15
$3-4$	0.30
$4-5$	0.40

- Frequency: 20 Hz to 300 kHz

2-5. 2 Terminal Resistance Measurements ($2 \mathrm{~W} \Omega$)/4 Terminal Resistance Measurements (4W Ω)
2-5-1. Resolution, Accuracy and Measurement Current
Unit: \pm (\% of reading $+\%$ of range)

Range	Full Scale	Resolution	Accuracy	Temperature Coefficient	Measurement Current
100Ω	119.9999	$0.1 \mathrm{~m} \Omega$	$0.010+0.004$	$0.0006+0.0005$	Approx. 1 mA
$1 \mathrm{k} \Omega$	1.199999	$1 \mathrm{~m} \Omega$	$0.010+0.001$	$0.0006+0.0001$	Approx. 1 mA
$10 \mathrm{k} \Omega$	11.99999	$10 \mathrm{~m} \Omega$	$0.010+0.001$	$0.0006+0.0001$	Approx. $100 \mu \mathrm{~A}$
$100 \mathrm{k} \Omega$	119.9999	0.1Ω	$0.010+0.001$	$0.0006+0.0001$	Approx. $10 \mu \mathrm{~A}$
$1 \mathrm{M} \Omega$	1.1999999	1Ω	$0.010+0.001$	$0.0010+0.0002$	Approx. $5 \mu \mathrm{~A}$
$10 \mathrm{M} \Omega$	11.99999	10Ω	$0.040+0.001$	$0.0030+0.0004$	Approx. 500 nA
$100 \mathrm{M} \Omega$	119.9999	100Ω	$0.800+0.010$	$0.1500+0.0002$	Approx. $500 \mathrm{nAA} / / 10 \mathrm{M} \Omega$

- Reliability related to 4 terminal resistance measurements or 2 terminal resistance measurements after zero compensation with the NULL. operation when using $61 / 2$ digits resolution. A margin of error equalling 0.2Ω will be added to the 2 terminal resistance measurement if the NULL operation is not used.
- Maximum Permissible Voltage

Between the Ω-COM Terminals: 800 Vpeak (continuous), 1100 Vpeak (for 1 minute)
Between Sense Hi-Lo: 200 Vpeak

- Terminal Open-Circuit Voltage < 17 V

2-6. Continuity Tests (CONT ill)

2-6-1. Accuracy, Resolution and Measurement Current

Resistance Range	Resolution	Threshold	Accuracy	Temperature Coefficient	Measurement Current	Sampling Rate
$1 \mathrm{k} \Omega$	$1 \mathrm{~m} \Omega$	$1 \Omega \mathrm{to} 1000 \Omega$	$0.010+0.020$	$0.001+0.002$	Approx. 1 mA	$100 \mathrm{~S} / \mathrm{s}$

- Electronic Buzzer Tone
- Maximum Permissible Voltage: 800Vpeak (continual), 1100Vpeak (for 1 minute)

2-7. Diodes (
2-7-1. Accuracy and Measurement Range
Unit: \pm (\% of reading $+\%$ of range)

Measurement Current	Measurement Range	Accuracy	Temperature Coefficient	Terminal Open- Circuit Voltage	Sampling Rate
Approx. 1 mA	0.1 mV to 1.1999 V	$0.010+0.020$	$0.001+0.002$	$<17 \mathrm{~V}$	$100 \mathrm{~S} / \mathrm{s}$

[^4]2.8. Tenperature Measurement (TEMP, TC: Thernocouple) 2.-8.1. Accuracy and Resolution

Unit: \pm (\% of reading + Digits

Thermocouple	Measurement Range (${ }^{\circ} \mathrm{C}$)	Accuracy	Resolution	Maximum Permissible Voltage
R	- 50 to 0	0.20+70	$0.01{ }^{1} \mathrm{C}$	800Vpeak (continual) 1100Vpeak (for 1 minute)
	0 to 100	0.20+50		
	100 to 1765	0.20+30		
K(CA)	- 200 to - 100	$0.15+50$		
	- 100 to 0	$0.15+35$		
	0 to 1370	$0.15+20$		
T(CC)	-200 to - 100	$0.15+50$		
	- 100 to 0	$0.15+35$		
	0 to 400	$0.15+20$		
J (C)	-200 to - 100	$0.15+50$		
	- 100 to 0	$0.15+35$		
	0 to 1200	$0.15+20$		
E(CRC)	-200 to - 100	$0.15+50$		
	- 100 to 0	$0.15+35$		
	0 to 1000	$0.15+20$		

- The above reliability levels do not include thermocouple reliability.
- The cold junction temperature is input on the TEMP/SENSOR menu, and the margin of error for this is not included.
$\pm 0.1^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ (total thermocouple) is added to the guaranteed operating temperature between $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$, and between $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
The standard thermoelectromotive force was acquired with piecewise linear approximation calculations in accordance with JIS C 1602-1995.

2-9. Temperature Measurements (TEMP, RTD: Measurement Temperature Resistance Detector)

2-9-1. Measurement Range, Accuracy and Resolution

RTD	Measurement Range $\left({ }^{\circ} \mathrm{C}\right)$	Accuracy	Temperature Coeficicient	Resolution
Pt100	-200 to 850	$0.06^{\circ} \mathrm{C}$	$0.003^{\circ} \mathrm{C}$	$0.01^{\circ} \mathrm{C}$
JPt100	-200 to 510			

- Pt100: Conforms to JIS C1604-1997 standards
- JPt100: Conforms to JIS C1604-1989 standards
- The 4 conductance cable equation does not include measurement cable (or probe) Accuracy.
- Maximum Permissible Voltage: 800Vpeak (continuous), $1100 V$ peak (for 1 minute)

2-10. Frequency Measurement (FREQ)
Accuracy, Display Digit Count, Measurement Range AC Coupling, Reciprocal System, Crest Factor < 5

Gate Time	Display Digit Count, Measurement Range	Accuracy (\%)	Accuracy (\%)	Accuracy (\%)	Accuracy (\%)
		3 to 5Hz	5 to 10Hz	10 to 40Hz	40 to 300kHz
1 s	$\begin{gathered} 7 \text { Digits: } 3.000000 \mathrm{~Hz} \text { to } \\ 300.0000 \mathrm{kHz} \end{gathered}$	0.1	0.05	0.03	0.01
100ms	$\begin{gathered} 6 \text { Digits: } 3.00000 \mathrm{~Hz} \text { to } \\ 300.000 \mathrm{kHz} \\ \hline \end{gathered}$	0.1	0.05	0.03	0.01
10 ms	$\begin{gathered} 5 \text { Digits: } 3.0000 \mathrm{~Hz} \text { to } \\ 300.00 \mathrm{kHz} \end{gathered}$	0.1	0.05	0.03	0.01
1 ms	$\begin{gathered} \hline 4 \text { Digits: } 3.000 \mathrm{~Hz} \text { to } \\ 300.0 \mathrm{kHz} \end{gathered}$	0.1	0.05	0.03	0.01

- Maximum Permissible Voltage: 750 Vrms or 1100 V peak, but the DC component is $\pm 500 \mathrm{~V}$ or less (continuous).
- It is possible to switch the input range between automatic and manual for a range between ACV 100 mV and 750 V .
- Input Range: 100 mVrms to 750 Vrms at between 3 Hz and 100 kHz
* However, up to a maximum of 2.2×107 [V/HZ] between 100 kHz and 300 kHz
- Up to 100 kHz is guaranteed for input of 200 Vrms or more.
- Values that are less than 3 Hz and more than 300 kHz will be measured and displayed, but Accuracy is not guaranteed.

3. Trigger Functions

Trigger Mode	
AUTO	Automatic measurement in accordance with the sampling rate and interval
SINGLE	Measurement in accordance with TRIG input
Trigger Source	
Rear Panel TRIG Input	Possible to switch polarity and Valid/Invalid on the menu
HOLD/TRIG Key	Manual key input
REMOTE	Remote Commands
Trigger Sampling Count	Sets the number of data items to be measured continuously for each trigger
Setting Range	1 to 100,000
Trigger Delay	Sets the amount of delay from the TRIG input through to the measurement of the first item of data
Setting Range	$0.00 \mathrm{~ms} \mathrm{to} 3,600 \mathrm{~s}$
Resolution	$10 \mu \mathrm{~s}$
Intervals	Sets the sampling measurement intervals * Validated when a larger value than the current sampling rate interval is set
Setting Range	$0.00 \mathrm{~ms} \mathrm{to} \mathrm{3,600} \mathrm{~s}$
Resolution	$10 \mu \mathrm{~s}$

4. Operation Functions

Can be set simultaneously, with the exception of combinations of scaling operations and decibel operations 4-1. Moving Average (SMOOTHING Operation)

Average Count	Can be set within a range of 2 to 100 (positive integers)
	* When the trigger is set as SINGLE, once the average count set has been reached, the trigger sample count set is acquired additionally.
4-2. Differential Operations (NULL Operation)	
Operation Details	Operation result = RAW value - NULL value
RAW Value	Function measurement value at that point
NULL Value	Acquired through the following NULL value setting
Setting Details	
	ON/OFF set with the [NULL] key or with the NULL menu available for each function
Operation ON/OFF	* The measurement value set at that point for each function will be set as the NULL value when the [NULL] key is set at ON
NULL Value Setting	When setting the parameter from the NULL menus available for each function, it is possible to set in the three different types from DEFAULT value, Measurement Value and Value Input The Value Input parameter is set with the seven valid digits attached to the eight multipliers ($\mathrm{p}, \mathrm{n}, \mu, \mathrm{m}, \mathrm{k}, \mathrm{M}, \mathrm{G}, \mathrm{T}$)

4-3. Scaling Operations (SCALING Operations)

* Cannot be set at the same time at the decibel operation (dB operation) explained in section 4-4.

Operation Equation	Can be selected from the following two types. Display Value $=(\text { Measurement Value }-A)^{*} B / C$ Display Value $=D /$ Measurement Value
Constant	The four constants A, B, C and D are set
	The Value Input parameter is set with the seven valid digits attached to the eight multipliers $(p, n, \mu, m, k, M, G, T)$

4-4. Decibel Operations (dB Operations)

Operation	Can be selected from dBV and dBm	
d Bm	Operation Result $=10 \cdot \log _{10} 1($ (measurement value $/$ standard resistance) $/$ $\left.\left(1.0 \times 10^{-3}\right)\right\}$	
Standard Resistance Value	Unit: Ω Selected from 4, 8, 16, 32, 50, 75, 93, 110, 124, 125, 135, 150, 200, 250, 300, $500,600,800,900,1000,1200$ and 8000	
d BV	Operation Result $=20 \cdot \log _{10}($ measurement \|value	/ standard voltage)
Standard voltage Value	Units V: Selected from $1 \mu \mathrm{~V}, 1 \mathrm{mV}$ and 1 V	
REL Operation	Either one of the above-mentioned decibel operations can be set. Displays the difference acquired through subtracting the standard dB value from the dB operation result.	
Standard dB Value	It is possible to set the three different types from DEFAULT value, Measurement Value and Value Input Range of value input: ± 500.0000 (seven valid digits)	
Response Functions	Only available at the DCV and ACV functions are valid	

4-5. Statistic Operations (STATISTIC Operation)

5. Logging Function

Logging Mode: Can be switched between NORMAL and BULK

Data Size	NORMAL mode: Fixed at 100k Readings BULK mode: $1 \mathrm{k}, 2 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{k}, 20 \mathrm{k}, 50 \mathrm{k}$ and 100k Readings
	The following contents are stored. -Measurement data Stored Data -Date and time of logging -Names of each function -Configuration information on each function * Displays the operation names when the NuLL, dB and SCALING operations in the ON status
Export Function	Enables data to be saved on USB memories
File Format	Text file
Data Saved	Function measurement data
Logging Times	Can be set to ON/OFF. * Date and time are stored when set at ON

EDGE LEVEL	Can be set when EDGEPOSITIVE/EDGENEGATIVE/EDGEBOTH have been selected with the edge search function
Setting Range	Set with the seven valid digits attached to the eight multipliers (p, n, $\mu, \mathrm{m}, \mathrm{k}, \mathrm{M}, \mathrm{G}, \mathrm{T}$)
Secondary Display	
Time Display	Time at the T1 and T2 cursor points Data count between the T1 and T2 cursors Time difference between the T1 and T2 cursors

8. Histogram Chart Display Function

8-1. Online Histogram Function

8-2. Offline Histogram Chart Display Function
With the histogram chart display selected with the ofline browsing mode.
The methods for setting up the display mode, the BIN count, the vertical axis and the horizontal axis, and the cursor function are the same as with the online mode.

9. Meter Display Functions

9-1. Arc Scale Meter Display (can be selected on the primary display)

SCALE	It is possible to select AUTO, FULLSCALE, MANUAL and LOG
LOG	LOG MAX and LOG MIN are set within a range of $\times 10$ to $\times 10^{6}$
Other than LOG	Displays \pm 3div of offset (the range and offset can be set voluntarily in the MANUAL mode) Range: $1.0 \mathrm{p} / \mathrm{div}$ to $500.0 \mathrm{~T} / \mathrm{div}$ Offset: - 100,000 div to $+100,000$ div
9-2. Analog Meter Display (can be selected on the secondary display)	
Scale	It is possible to select AUTO, FULLSCALE, MANUAL and LOG
LOG	LOG MAX and LOG MIN are set within a range of $\times 10$ to $\times 10^{6}$
Other than LOG	Displays \pm 3div of offset (the range and offset can be set voluntarily in the MANUAL mode) Range: 1.Op/div to 500.0T/div Offset: - 100,000 div to $+100,000$ div

10. Save/Recall Settings on Setup Condition Parameters(SETUP)

POWER ON RECALL	The setup conditions when the power is switched on can be selected from the following three parameters.
LAST	Setup conditions in effect the last time the power was switched off
DEFAULT	Setup conditions preset in the factory prior to shipping
RECALL	Setup conditions recalled by specifying the number of the internal setup memory
SAVE/RECALL	
Save Destination	Internal or USB memory
Number of saves on the internal memory	Internal: 10
External Control	A function for performing the sequential RECALL of the internal setup memory with the use of external signals (the SC-361 LAN\&RS-232 options are required)
Input Signals	
Level	H: +2.0Vmin, L: +0.8 Vmax , maximum permissible voltage: $\pm 15 \mathrm{~V}$
Time Width	10 ms or more
INC	Advances with the SETUP memory number and RECALL
DEC	Returns the SETUP memory number and RECALL
BEGIN	Returns the SETUP memory number to the default value and RECALL
Output Signals	
Level	H:55.0 Vmin, L.: -5.0 Vmax
BUSY	Displays whether it is possible or not to receive the input signal (receipt possible during the L Level)

Optional Accessories

SC-363

GPIB Interface

* Factory option
* Cannot be mounted at the same time as the SC-361
(LAN\&RS-232 Interface).

SC-362
DIO Interface

* Factory option

SC-361

LAN\&RS-232 Interface

* Factory option
* Cannot be mounted at the same time as the SC-363 (GPIB Interface).

Digital Multimeter（portable type） VOAC7500H Series

©
Isolate 2－channel input dual function $0.1 \mu \mathrm{~V}, 509999,51 / 2$ digits
VOAC7523H
Isolate 2－channel input dual function $1 \mu \mathrm{~V}, 509999,51 / 2$ digits
VOAC7520H

4－terminal resistance measurement dual function $0.1 \mu \mathrm{~V}, 509999,51 / 2$ digits
VOAC7522H
4－terminal resistance measurement dual function $1 \mu \mathrm{~V}, 509999,51 / 2$ digits VOAC7521H

Digital Multimeters VOAC7523H／7522H／752OH／7521H Specifications ＊Accuracy（ $\pm X \%$ of reading + Y digits）indicated by $X+Y$
The measuring accuracy indicated below can be obtained for a year following the calibration of the instrument．
1．Typical Sample Rate and Resolution

Sample Rate	Resolution	Reading Rate	Hum Rejection
SLOW	$5.5-$－digit	approx． 4 times $/ \mathrm{sec}$	Yes
MID	5．－digit	approx． 20 times $/ \mathrm{sec}$	Yes
FAST	4.5 －digit	approx． 100 times $/ \mathrm{sec}$	N／A

2．DC Volt（DCV） 50 mV range is for the VOAC7523H／ 7522 H only．

Range	Resolution		Input Resistance	Accuracy ${ }^{\text {a }}$	
	5．5－digit	4．5－digit		SLOW／MID	FAST
50 mV	$0.1 \mu \mathrm{~V}$	$1 \mu \mathrm{~V}$	$100 \mathrm{M} \Omega$ or more	$0.025+10$	$0.025+15$
500 mV	$1 \mu \mathrm{~V}$	10 MV	1000M2 or more	$0.012+5$	$0.012+10$
5 V	10 VV	$100 \mu \mathrm{~V}$	$0.012+2$	$0.012+7$	
50 V	$100 \mu \mathrm{~V}$	1 mV	approx．10M Ω	$0.016+5$	$0.016+10$
500 V	1 mV	10 mV		0．016＋2	$0.016+7$
1000V	10 mV	100 mV		$0.016+2$	$0.016+7$

The accuracy in the 50 mV and 500 mV ranges is specified after zero compensation through the REL operation．
Sample rate in the 50 mV range
SLOW／MID：Approx． 0.5 times／sec，FAST：Approx． 50 times／sec
Max．input voltage： 50 mV to 5 V range $\pm 800 \mathrm{~V}$（continuous） 50 V to 1000 V range $\pm 1100 \mathrm{~V}$（continuous）
Resolution and noise rejection

Resolution	Sample Rate	NMPR	CMRR
5.5 －digit	SLOW	55 dB or more	120 dB or more
5.5 －digit	MID	55 dB or more	120 dB or more
4.5 －digit	FAST	0dB	55 dB or more

3．CH－B DC Volt（DCV）VOAC7523H／7520H only

Range	Resolution	Input Resistance	Accuracy＊	
	4．5－digit		SLOW／MID	FAST
5 V	$100 \mu \mathrm{~V}$	$\begin{aligned} & \text { CH-B:H to CH-B:L } 10 M \Omega \pm 3 \% \\ & \text { CH-B:H to CH-A:L } 5 M \Omega \pm 3 \% \\ & \text { CH-B:L to CH-A:L } 5 M \Omega \pm 3 \% \end{aligned}$	$0.025+2$	$0.025+30$
50 V	1 mV			$0.025+8$
300 V	10 mV			0．025＋5

Max．input voltage：$\pm 300 \mathrm{~V}$ ，between CH－A L and CH－B $\pm 300 \mathrm{~V}$
Resolution and noise rejection

Resolution	Sample Rate	NMRR	CMRR	Isolation between CH－A and CH－B
$4.5-$ digit	SLOW／MID	55 dB or more	120 dB or more	56 dB or more
4.5 －digit	FAST	0dB	55 dB or more	

4．AC Volt（ACV，DC＋ACV）detection of True RMS
Up to 100kHz for VOAC7521H／7520H

Range	Resolution	Measurement Range		Input Resistance
	5．5－digit	SLOW	MID／FAST	
500 mV	$1 \mu \mathrm{~V}$	15 Hz to 300 kHz	200Hz to 300kHz	less than approx． $1 \mathrm{M} \Omega / / 100 \mathrm{pF}$
5 V	10 VV			
50 V	$100 \mu \mathrm{~V}$			
500 V	1 mV	45 Hz to 100kHz	200Hz to 100kHz	
750 V	10 mV	45 Hz to 20kHz	200 Hz to 20kHz	

Accuracy：SLOW Sample（Sine wave Amplitude at 5\％to 100% of fullscale of range）

Frequency	Accuracy＊
15 Hz to 45 Hz	$0.5+150$
45 Hz to 100 Hz	$0.25+150$
100 Hz to 30 kHz	$0.2+150$
30 kHz to 100 kHz	$0.5+300$
100 kHz to 300 kHz	$2.5+1000$

Coefficient to input other than sine wave

Crest Factor	Crest Factor		
	1 to 1.5	1.5 to 2	2 to 3
15 Hz to 30 kHz	0.05%	0.15%	0.30%
30 kHz to 300 kHz	0.20%	-	-

Resnponse time

Sample Rate	Resolution	Reading Rate	Response Time
SLOW	$5.5-$ digit	4 times $/ \mathrm{sec}$	less than 3 sec
MID／FAST	$5.5-$－digit	20 times $/ \mathrm{sec}$	less than 2 sec

[^5] Sample rate of FAST becomes the same values as MID（approx． 20 times $/ \mathrm{sec}$ ）．

Auto range is not available between 5 mA to 500 mA range and 10 A range because of using different input terminals． Max．input current： 500 mA at 5 mA to 500 mA ranges（FUSE $0.5 \mathrm{~A} / 250 \mathrm{~V}$ ） 10 A at 10A range（FUSE 15A／250V）
6．AC Current（ACA，DC $+A C A$ ）

Range	Resolution	Measurement Range		Input Resistance
	$5.5-$ digit	SLOW／MID	FAST	
5 mA	10 nA	15 Hz to 5 kHz	200 Hz to 5 kHz	150Ω or less
50 mA	100 nA			
	$1 \mu \mathrm{~A}$	45 Hz to 5 kHz		2 W or less
500 mA	$100 \mu \mathrm{~A}$		0.1 W or less	
10 A				

Accuracy：SLOW Sample（Sine wave）amplitude at 5\％to 100\％of fullscale（ 10% to 100% for10A range）

Frequency	Accuracy＊	Crest Factor		
		1.5 to 2	2 to 3	
15 Hz to 45 Hz	$1+200$	0.05%	0.15%	0.30%
45 Hz to 1 kHz	$0.4+200$			
1 kHz to 5 kHz	$5.0+200$			

Response time
Sample Rate Resolution Reading Range Response time SLOW 5.5 －digit 4 times $/ \mathrm{sec}$ less than 3 sec MID／FAST 5.5 －digit 20 times $/ \mathrm{sec}$ less than 2 sec

Max．input current： 500 mA for 5 mA to 500 mA ranges（FUSE 0．5A）
10A for 10A range（FUSE 15A）
DC Component on input current must be included in the Max．input current
In the case of 10 A range at 45 Hz to $1 \mathrm{kHz}, 0.3$ must be added to \％
In the case of $D C+A C A, 500$（less than 45 Hz ）or 300 （ 45 Hz or higher）must be added to the value of Accuracy in above． Sample rate of FAST becomes the same value as MID（approx． 20 times $/ \mathrm{sec}$ ）．

7．Resistance（2 Wire $\Omega / 4$ Wire Ω ） 4 Wire Ω ：VOAC7522H／7521H only

Range	Resolution		Accuracy＊		Test Current
	SLOW／MID	FAST	SLOW／MID	FAST	
50Ω	$0.1 \mathrm{~m} \Omega$	$1 \mathrm{~m} \Omega$	$0.025+10$	$0.025+15$	approx．10mA
500Ω	$1 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$0.014+3$	$0.014+8$	approx． 10 mA
$5 \mathrm{k} \Omega$	$10 \mathrm{~m} \Omega$	0.1Ω			approx．1mA
$50 \mathrm{k} \Omega$	0.1Ω	1Ω			approx． $100 \mu \mathrm{~A}$
$500 \mathrm{k} \Omega$	1Ω	10Ω	$0.015+3$	$0.015+33$	approx．10بA
$5 \mathrm{M} \Omega$	10Ω	10Ω	$0.033+30$	$0.033+30$	approx． $1 \mu \mathrm{~A}$
50M	100Ω	100Ω	$0.25+30$	$0.25+30$	approx．100nA
500M	$1 \mathrm{k} \Omega$	$1 \mathrm{k} \Omega$	1．5＋50	$1.5+50$	approx．10nA

Max．input voltage：$\pm 500 \mathrm{~V}$ peak Open circuit test voltage： 12 V or less
The accuracy at 50Ω to $5 \mathrm{k} \Omega$ range are specified after zero compensation through the REL operation．
Sample rate of FAST at 5Mת to 500M』 range becomes the same value as MID（approx． 20 times $/ \mathrm{sec}$ ）．
8．Low－Power Resistance（2 Wire Ω ）

Range	Resolution	Accuracy＊		Test Current
	SLOW／MID／FAST	SLOW／MID	FAST	
500Ω	$10 \mathrm{~m} \Omega$	$0.1+5$	$0.1+15$	approx． 1 mA
$5 \mathrm{k} \Omega$	0.1Ω			approx． $100 \mu \mathrm{~A}$
50k』	1的			approx．10＾A
$500 \mathrm{k} \Omega$	10Ω	$0.2+30$	$0.2+40$	approx． $1 \mu \mathrm{~A}$
$5 \mathrm{M} \Omega$	100 Ω		$0.2+30$	approx．100nA
50M	$1 \mathrm{k} \Omega$	$1.5+30$	$1.5+30$	approx．10nA

The accuracy at 500Ω to $5 \mathrm{k} \Omega$ range are specified after zero compensation through the REL operation．
Sample rate of FAST at 5 M Ω to $500 \mathrm{M} \mathrm{\Omega}$ range becomes the same value as MD（approx． 20 times $/ \mathrm{sec}$ ）．
Indications are in 4.5 digits for SLOW，MID，and FAST．
9．Diode

Test Current	Measurement Range	Accuracy＊	Open Circait Test Voltave	Max．Input Voltave
approx． 1 mA or 10 mA	0.1 mV to 5.0999 V	$0.014+13$	12 V or less	$\pm 50 \mathrm{~V}$ peak

10．Temperature

Thermocouple	Temperature Range to be Measured	Accuracy＊	Resolution	Max．Input Voltave
R	$-50^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$0.2+70$	$0.1{ }^{\circ} \mathrm{C}$	$\pm 500 \mathrm{~V}$ peak
	$0^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$0.2+50$		
	$+100^{\circ} \mathrm{C}$ to $+1768^{\circ} \mathrm{C}$	$0.2+30$		
K（CA）	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$0.15+50$		
	$-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$0.15+35$		
	$0^{\circ} \mathrm{C}$ to $+13722^{\circ} \mathrm{C}$	$0.15+20$		
T（CC）	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$0.15+50$		
	$-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$0.15+35$		
	$0^{\circ} \mathrm{C}$ to $+400^{\circ} \mathrm{C}$	$0.15+20$		
J（IC）	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$0.15+50$		
	$-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$0.15+35$		
	$0^{\circ} \mathrm{C}$ to $+1200^{\circ} \mathrm{C}$	$0.15+20$		
E（CRC）	$-200^{\circ} \mathrm{C}$ to $-100^{\circ} \mathrm{C}$	$0.15+50$		
	$-100^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$	$0.15+35$		
	$0^{\circ} \mathrm{C}$ to $+1000^{\circ} \mathrm{C}$	$0.15+20$		

11．Frequency（AC couple，Crest Factor：less than 3）

Sample Rate	Reading Rate（Gate time）	$\begin{array}{c}\text { Display Digits and Measurement } \\ \text { Range }\end{array}$		Accuracy＊
SLOW	approx． 0.5 times／sec（1s）	6－digit	$\begin{aligned} & 15.0000 \mathrm{~Hz} \text { to } \\ & 1.00000 \mathrm{MHz} \\ & \hline \end{aligned}$	$0.02+2$
MID	$\begin{gathered} \hline \text { approx. } 4 \text { times } / \mathrm{sec} \\ (100 \mathrm{~ms}) \end{gathered}$	5－digit	15.000 Hz to 1.0000 MHz	
FAST	$\begin{gathered} \text { approx. } 10 \text { times/sec } \\ (10 \mathrm{~ms}) \end{gathered}$	4－digit	150.00 Hz to 1.000 MHz	

12．Chart for combination of Dual Function											
	DCV	CH－B DCV ${ }^{(1)}$	ACV	DC＋ACV	DCA	ACA	DC＋ACA	2 WireW	4 Wirel｜${ }^{(2)}$	Hz	C
DCV	\times	0	\triangle	\triangle	\triangle	\triangle	\triangle	\times	\times	\triangle	\triangle
CH－BDCV ${ }^{\text {（1）}}$	0	\times	0	0	0	0	0	0	－	0	0
ACV	\triangle	0	\times	0	0	\triangle	\triangle	\times	X	0	X
DC＋ACV	\triangle	0	0	\times	0	\triangle	\triangle	\times	\times	0	X
DCA	\triangle	0	0	0	X	\triangle	\triangle	\triangle	\triangle	0	X
ACA	\triangle	0	\triangle	\triangle	\triangle	x	0	\triangle	\triangle	\triangle	x
DC＋ACA	\triangle	0	\triangle	\triangle	\triangle	0	\times	\triangle	\triangle	\triangle	X
2 WireW	X	0	X	X	\triangle	\triangle	\triangle	X	\triangle	X	X
4 WireW ${ }^{(2)}$	X	－	X	\times	\triangle	\triangle	\triangle	\triangle	X	X	X
Hz	\triangle	0	0	0	0	\triangle	\triangle	\times	X	X	x
${ }^{\circ} \mathrm{C}$	\triangle	0	X	\times	\times	X	\times	\times	X	x	\times

13. General

MATH		Moving Average, Scale, Decibel (dBm, dBu), Difference, Statistics (MAX, MIN, X, s), Comparison (COMP), Arithmetic Calculation between Dual Function
Memory	DATA	Max. 3000 data with 10 msec resolution time mark (Elapsed time)
	SET UP	10
Interfaces (Full Remote)	Standard	RS-232
	Option	LAN, GPIB
Power Supply	Voltage	AC100V, 110V, 220V, 240V
	Frequency	$50 \mathrm{~Hz}, 6 \mathrm{~Hz}$
	Power Consumotion	21 VA (includes options) or less

Operation Temperature and Humidity		$10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}($ less than $80 \% \mathrm{RH})$ no condensation, $70 \% \mathrm{RH}$ or less at $+40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Storage Temperature and Humidity		$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ($70 \% \mathrm{RH}$ or less) no condensation, includes operation temperature
Size	Dimensions (min)	210(W) $\times 99(H) \times 353(\mathrm{D})$ (Options are built into the main unit)
	Weight	3.5 kg (includes options) or less
Standard Accessories		Fuse, Test Leads, Alignment Screwdriver, Operation Manual(CD-ROM), Power cable

Isolate 2-channel input
(VOAC7523H/7520H)

- If the $\mathrm{CH}-\mathrm{A}$ and $\mathrm{CH}-\mathrm{B}$ input is from an insulated VOAC7523H or 7520 H , the electrical potential for different circuits can be measured simultaneously.

Dual Channels

- Measurements that conventionally require two oscilloscopes can now be performed simultaneously with a single unit to greatly improve efficiency.
A connection example is shown below. Simultaneous display and simultaneous measurements are being performed here

Dual Display / Dual Function

Accurate Root-Mean-Square (RMS)

- Accurate root-mean-square values for AC voltage and AC current can be measured.

Root-mean-square values for direct current can also be measured ($D C+A C$) V, ($D C+A C$) A

Abundant Interfaces

- LAN Interface: SC-351

1OBASE-T (cannot be connected at the same time as the GPIB)

- GPIB Interface: SC-353

To create a familiar system

- DIO Interface: SC-352

Useful for judging acceptable and non-acceptable waveforms. Open collector output.

- D/A Output: SC-354

Output can be selected from three patterns of $10 \mathrm{~V}, 1 \mathrm{~V}$ and 0.1 V .
Cannot be connected at the same time as the DIO.
See the following website for further details.
www.iti.iwatsu.co.jp/jp/products/voac/voac752xh_opt.html

- RS USB Converter: SC-525

USB can be used when connected with a RS-232 connector.
Trend Graphs Using the Interface Data can be loaded into Excel and other spreadsheet software when connected to a PC with the interface. This enables trend graphs, etc., to be easily made.

Options

Product Name	Part Number	
High-resistance test lead	SC-004	
Test leads	SC-020	
Arrow clip		
For SC-020 (AC30V/DC60V/DC3A)		
SC-026 Product		
Alligator clip H For SC-020 (600Vrms, CAT II/10A)		

*1 The LAN interface SC-351 and GPIB interface SC-353 cannot be installed at the same time.
*2 The DIO interface SC-352 and D/A Converter interface SC-354 cannot be installed at the same time.

Digital Multimeter (Handy type)
$1 \mu \mathrm{~V}, 50000,41 / 2$ digits
VOAC22

Universal Counter SC-7200HSeries

A new lineup of high-performance counters that transcend their class!

Useful functions based on the need for a maximum of 3 GHz and easy use.

- Enables frequency measurements for two independent channels
(SC-7207H, SC-7205H.)
- Pulse width measurements and time interval measurements greatly broaden the scope of single-gate measurement.
- Easy operations with single key strokes for each action.
- Easy-to-see fluorescent display area. Detailed information displayed with 5×7 dot resolution.
* A full-spelling guide provides powerful support for operations.
- Auto-trigger function that eradicates the need for setting the trigger level. Manual setup is, of course, also possible.
- Making line inspection tasks more efficient is a simple chore with the comparison and statistic calculation functions.
- The scaling calculation function enables single unit conversion (revolutions, speed, etc.)
- Input signal peak voltage measurements make it easy to confirm the waveform amplitude.
- The save/recall function for panel setup makes predetermined inspection tasks more efficient.
- The GPIB (optional for the SC-7205H: SC-701) and RS-232 interfaces provide full remote control.
* Transmission is performed in the real-time at a high speed of a maximum 200 items of data/second, which contributes to improved line throughput.

Full lineup of options to provide greater expandability

- Comparator output (open collector) with digital I/0 (SC-702.) External trigger input.
*150mA can be used for line monitoring equipment without modification to provide a margin of 50V.
-The high-stability standard oscilloscope (SC-703A) provides highly accurate measurements.

Universal Counter Option

GPIB Interface

SC-701

For use with the SC-7205H

- Mounting the SC-701 onto the SC-7207H, 7206H and 7205H Universal Counters (fitted as standard to the SC-7207H and 7206H) enables measurements taken with external GPIB controllers to be reset, the remote setup of measurement functions, time base functions and calculations, etc., and the results of measurements to be transmitted as data to external sources.
This is a factory option and needs to be ordered at the same time as the main unit. Ordering factory installation at a later date will be chargeable.

Digital //0

SC-702

For use with the SC-7207H, SC-7206H and SC-7205H

- Installing the SC-702 onto the SC-7207H, SC-7206H and SC-7205H Universal Counters will enable control over the start of measurement and the output of comparison calculation results. (open collector) Connecting an external lamp also allows parts to be selected and inspection results to be easily browsed.
* This is a factory option and needs to be ordered at the same time as the main unit. Ordering factory installation at a later date will be chargeable.

GPIB Interface (Equipped as standard on SC-7207H and SC-7205H. Factory option only for SC-7205H)

Main Performance

Maximum Output Terminal Rating	Withstand voltage	DC50V
	Withstand current	DC150mA
	Frequency response	DC to 1kHz
Maximum Input Terminal Rating	Withstand voltage	$\mathrm{DC5V}$
	Frequency response	DC to 1 kHz

RS-USB Converter

SC-525

For use with the SC-7207H, SC-7206H and SC-7205H

- The cable for connecting the RS-232
measurement unit to a personal computer's USB port.
- Overall length approximately 85 cm .
* Can also be used with the VOAC 7500 H series, the SG-4115 and the SG-4105.

High-stability Standard Oscilloscope

SC-703A Custom Order

	New Crystal (SC.703A)
Oscillation Frequency	10MHz
Temperature Characteristics	$\begin{aligned} & +/-0.05 \mathrm{ppm} \\ & \text { Range of } 0^{\circ} \mathrm{C} \text { to } 40^{\circ} \mathrm{C} \text { with }+25^{\circ} \mathrm{C} \text { as the standard. } \end{aligned}$
Rising Time	$+/-0.05 \mathrm{ppm}$ 10 minutes for power switch-on with the frequency 1 hour after power switch-on as the standard
Time Fluctuations (per day)	$+/-0.02 \mathrm{ppm}$ Value at 72 hours after power switch-on with 48 hours after power switch-on as the standard
Time Fluctuations (per year)	+/-0.02ppm Value at one year after power switch-on with 10 days after power switch-on as the standard

Universal Counters SC-7207H / SC-7206H / SC-7205H Specifications

Frequency A (FREQ-A)					
-Measuring range and resolution *SC-7206H is not equipped with EXT-B gate					
		SC-7207H		SC-7206H, SC-7205H	
Reference time (reference frequency)		10ns (100MHz)		100 ns (10MHz)	
Range	DC	6 mHz to 230MHz		0.6mHz to 230MHz	
	AC	$10 \mathrm{~Hz} \mathrm{to} \mathrm{230MHz}$			
Resolution and count method	Frequency	Below 100MHz	100 MHz or more	Below 10MHz	10 MHz or more
	Count method	Reciiprocal count	Direct count	Reciprocal count	Direct count
	1 ms gate	5 digits	1 kHz	4 digits	1 kHz
	10 ms gate	6 digits	100 Hz	5 digits	100 Hz
	0.15 gate	7 digits	10Hz	6 digits	10Hz
	15 gate	8 digits	1 Hz	7 digits	1 Hz
	10 s gate	9 digits	0.1 Hz	8 digits	0.1 Hz
	EXT-B gate *	Reciprocal count method: The number of digits is determined by external gate time			
	SGL gate	Reciprocal count method: The number of digits is determined by measured signal			

AC Line Frequency (FREQ-LINE) (for SC-7207H and SC-7205H only)

- Measuring range and resolution

		SC-7207H	SC-7205H
Reference time		10 ns	100ns
Range		45Hz to 440Hz	
Resolution	0.15 gate	7 digits	6 digits
	15 gate	8 digits	7 digits
	10 s gate	9 digits	8 digits

Frequency C (FREQ-C) (for SC-7207H and SC-7206H only)

- Measuring range and resolution

Period A (PER1-A)
-Measuring range and resolution *SC-7206H is not equipped with EXT-B gate

		SC-7207H	SC-7206H, SC-7205H
Reference time		10ns	100 ns
Range	DC couple	5ns to 171s	5ns to 1,717s
	AC couple	5ns to 0.1s	
Resolution	1 ms gate	5 digits	4 digits
	10 ms gate	6 digits	5 digits
	0.15 gate	7 digits	6 digits
	1s gate	8 digits	7 digits
	10 s gate	9 digits	8 digits
	EXT-B gate*	The number of digits is determined by external gate time	
	SGL gate	The number of digits is determined by measured signal	

Duty ratio A (DUTY-A)

			-Measuring range and resolution	
			SC-7207H	SC-7206H, SC-7205H
Input signal frequency range			Same as FREQ-A	
Measuring range		SGL gate	0.01 to 99.999,999,99 [\%]	
		Internal gate	0.2就 $99.999,999,8[\%]$	2μ to 99.999,998 [\%]
Measuring resolution	Average count of internal gate	SGL gate	10ns/input period $\times 100$ [\%]	$100 \mathrm{ns/input} \mathrm{period} \times 100$ [\%]
		1 to 24	10ns/average input period $\times 100$ [\%]	100ns/average input period $\times 100$ [\%]
		25 to 2,499	$1 \mathrm{~ns} /$ average input period $\times 100[\%]$	10ns/average input period $\times 100$ [\%]
		2,500 to 249,999	$100 p s /$ average input period $\times 100[\%]$	$1 \mathrm{~ns} / \mathrm{average} \mathrm{input} \mathrm{period} \mathrm{x} 100$ [\%]
		250,000 to 24,999,999	10ps/average input period $\times 100$ [\%]	100ps/average input period $\times 100$ [\%]
		25,000,000 or more	$1 \mathrm{ps} /$ average input period $\times 100$ [\%]	10ps/average input period $\times 100$ [\%]

Pulse width A (P.W-A)

- Minimum pulse width: 6 ns •Maximum repetitive frequency: 80 MHz •Measuring range and resolution

			SC-7207H	SC-7206H, SC-7205H
Reference time			10 ns	100ns
Measuring range		SGL gate	10ns to 1715	100ns to 1,717s
		$\begin{aligned} & \text { Internal gate (1 ms to } \\ & 10 \mathrm{~s} \text {) } \end{aligned}$	10ns to approx. 1/2 gate time	100ns to approx. $1 / 2$ gate time
Measuring resolution	Average count of internal gate	SGL gate	10ns to 100ns	100 ns to 1 ms
		1 to 24	10ns	100ns
		25 to 2,499	1ns	10ns
		2,500 to 249,999	100ps	1ns
		250,000 to 24,999,999	10ps	100ps
		25,000,000 or more	1ps	10ps

Time interval A $->$ B (T.INT A $->$ B) (for SC-7207H and SC-7205H only)

-Minimum time interval: 6ns •Maximum repetitive frequency: $80 \mathrm{MHz} \bullet$ Measuring range and resolution

			SC-7207H	SC-7205H
Reference tim			10 ns	100ns
		SGL gate	10ns to 10,955s	100 ns to 109,951s
Measuring r	ge	$\begin{aligned} & \begin{array}{l} \text { Internal gate (1 } \mathrm{ms} \text { to } \\ 10 \mathrm{~s} \text {) } \end{array} \\ & \hline \end{aligned}$	10ns to approx. 1/2 gate time	100ns to approx. 1/2 gate time
		SGL gate	10ns to 10 $\mu \mathrm{s}$	100 ns to $100 \mu \mathrm{~s}$
	Average	1 to 24	10 ns	100ns
Measuring	count of	25 to 2,499	1ns	10 ns
resolution	internal	2,500 to 249,999	100ps	1 ns
	gate	250,000 to 24,999,999	10ps	100ps
		25,000,000 or more	1 ps	10ps

- Measuring range and resolution

Input signal frequency range	
Measuring range	Internal gate (1ms to 10 s$)$
Measuring resolution	Internal gate (1ms to 10 s)

Peak voltage measuring (SC-7206H is not equipped with CH-B)
Measures and displays in real-time the voltage amplitude of the measured signal at CH-A or CH-B.

Frequency range		
Response time		
Voltage range		
Measuring error		
CH-A, CH-B input terminal (SC-7206H is not equipped with CH-8)		
Input RC		
Coupling		
Low pass filter		
Attenuator		
Trigger level	Measuring Range	ATT off
	Weasuring Range	ATT on
	accuracy ($0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$)	ATT off
Operating input voltage range		ATT off
		ATT on
Input sensitivity	Manual trigger	ATT off
	Manual trigger	ATT on
	Auto trigger	ATT off
		ATT on

CH-C input terminal (for SC-7207H and SC-7206H only)

Maximum input power		
Impedance		
Coupling		
VSWR		
Input sensitivity		
AGC off/on		-20dBm
		-25dBm
		-20dBm
Burst detection	Detection frequency range	
	Input sensitivity	
	AGC off	-20dBm
		-10dBm
	Detection delay time	

10WHZ STD IN

BNC terminal for more stable input of the external reference frequency

Frequency

$10 \mathrm{MHz} \pm 50 \mathrm{~Hz}$ ($\pm 5 \mathrm{ppm}$)

Amplitude

Input resistance 1 V rms to 5 V rms, threshold $=0 \mathrm{~V}$

Approx. 6.4k Ω
Input coupling AC

1OMHZ STD OUT/(MARKER OUT)

BNC terminal for output of internal reference oscillator or marker signal.
Marker signal is a signal that presupposes the brightness modulation (Z axis) of the analog oscilloscope for example. It is enabled at the SGL gate when the function is in between the time interval (T.INT $A->B$) and phase (PHAS A $->$ B). Output is "Lo level" from the start of CH-A measuring to the start of CH-B measuring.

Output	CMOS level
Reference frequency output	10MHZ: Stability is the same as that for the internal reference oscillator.
Marker output	In the 5MHz band, L-state is output during actual measuring. (for SC-7207H and SC-7205H only.)

Output interface

-RS-232 is equipped as standard \cdot GPIB is equipped as standard (option SC-701 for SC-7205H)
-Digital I/0 option can be installed (SC-702)
Environmental conditions
-Warm-up time: 60 minutes or more \cdot Operating temperature/humidity: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C} / 85 \% \mathrm{FR}$. H or less (no condensation) - Storage temperature/humidity: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C} / 90 \% \mathrm{R}$. H or less (no condensation)

Reference oscillator

Equipped with SC-7207H, SC-7206H and SC-7205H as standard
Output is possible to the 10 MHz OUT BNC terminal on the rear panel of the main unit.
\cdot Oscillation frequency: $10 \mathrm{MHz} \cdot$ Temperature characteristics: $\pm 2.5 \mathrm{ppm} /$ unit environmental temperature: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C} \cdot$ Aging rate: $\pm 1.0 \mathrm{ppm} /$ year

Power supply conditions and power supoly voltage changes (factory option)

-Voltage: AC100V / 110 V to $120 \mathrm{~V} / 22 \mathrm{OV}$ to $240 \mathrm{~V} \cdot$ •requency: $50 \mathrm{~Hz}, 60 \mathrm{~Hz}, 400 \mathrm{~Hz}$

- Power consumption: At AC100V with optional SC-701 and SC-702 are installed.

A Maximum of 3 GHz , and the Digit Display
 Greatly Increased to Accommodate a
 Maximum of 12Digits/sec

- USB, LAN, RS-232 (option) and full remote control with GPIB (option)
- Comparate output with digital I/0
- Full lineup of options to provide greater expandability
- Data stored on USB storage memories.
- High-stability clock oscillator option.

SC-7217 / SC-7215 Specifications

30MHz FUNCTION GENERATOR
 SG-4300 Series

Various types of output

 waveforms
Various Oscillation Modes

-Sine •Square •Pulse •Ramp •Parameter-variable •Arbitrary
Standerd waveforms, Large capacity arbitrary,Standerd parameter variable waveforms(25 waveforms)

Versatile Functions

-Sweep •Modulation •Burst •Trigger •Gate •Sequence •Synchronus operation •Variable duty •Variable rise •Variablr fall Equipped with program operation, parameter-variable waveforms etc,.

(1) Basic Parameters / Shortcut keys
(2) 3.5\# QVGA TFT Color LCD display
(3) Ten-key for direct input
(4) Enter key: Execute each setting
(5) Function knob for selecting items and values
6 Arrow keys
(7) UNDO key for undo
(8) Triggered indication light
(9) Manual Triggering key
(1) OUT : Output on/off key
(1) Soft keys for setting selectable functions
(1) NEXT key for selecting from multiple setting pages
(B) $\mathrm{CH} 1 / \mathrm{CH} 2$ key for switching CH 1 or CH 2
(4) CH 1 and CH 2 signal outputs Isolated by each channel

- Independent setting by each channel
- Phase shift control between 2 channels
- Synchronized output in different phase
- Frequency variable between 2 channels
- Different frequency output between

2 channels

- Differential output
(15) CH 1 and CH 2 synchronized signal outputs
Reference phase synchronization
- Synchronized signal with internal frequency modification
- Burst synchronization signal
- Sweep synchronization signal
- Sequence step synchronization signal
- Synchronized signal with internal modification signal
- Sweep X driving signal for X axes of oscilloscope/recorder
(10) CH1 Trigger input BNC
(1) CH2 Trigger input BNC
(B) CH1 Output modification/Adder input BNC
(1) CH2 Output modification/Adder input BNC
(20) Outer 10 MHz reference frequency signal input BNC
(21) Frequency reference signal output BNC
(22) Multiple I/O connector for sweep, sequence control and synchronization code output

(23) GPIB interface connector
(24) USB interface connector
(25) Fan motor

26 AC inlet(AC90V to AC250V)

Sequence control function

Programmable each signal waveform pattern Sequence oscillation is used to program combination of multiple pattern outputs such and Waveform type, frequency, amplitude, duty cycle and offset. It can be used together with parameter variable function at complicated and long timeframe waveform patterns for sudden frequency/sweep variable.

Waveforms 1

Waveforms 2

Waveforms 3

Waveform $1+2+3$ at long memory

Arbitrary signal waveform with free-download software

4M-word waveform memory for 512k-word/waveform, max.
Maximum 512 k -word/waveform outputs are available with arbitrary waveform generating software for example;

- Copy and paste of pre-set waveform shapes for complex signal waveforms.
- Waveform generation from waveform formula
- Expansion and compression of signal waveforms
- Computation between waveforms

Arbitrary waveform generating software ARB Edit

Waveform formula setting and waveform

Computation between waveforms

Specifications

		SG-4322	SG-4321
Product name		Function Generator	
Oscillation frequency		$0.01 \mu \mathrm{~Hz}$ to 30 MHz	
Number of channels		2 ch	1 ch
Vertical resolution for waveform		14bit	
	\sim	$0.01 \mu \mathrm{~Hz}$ to 30MHz	
	Γ (duty fixed)	$0.01 \mu \mathrm{~Hz}$ to 15 MHz	
	Π (duty variable)	$0.01 \mu \mathrm{~Hz}$ to 15 MHz	
	几	$0.01 \mu \mathrm{~Hz}$ to 15 MHz	
	入 (symmetry variable)	$0.01 \mu \mathrm{~Hz}$ to 5 MHz	
	Parameter-variable waveforms (25 types)	$0.01 \mu \mathrm{~Hz}$ to 5MHz	
	Arbitrary waveform	$0.01 \mu \mathrm{~Hz}$ to 5MHz	
	Noise	Bandwidth 26MHz	
Frequency setting resolution		$0.01 \mu \mathrm{~Hz}$	
Rising/falling variable		Pulse 15.0ns to 58.8Ms	
Arbitrary waveform data length/number of waves		512 K words / 128 waves, 4Mwords	
Maximum output voltage/resolution		20 Vp -p/open, 10 Vp -p/50 Ω, Resolution: 0.1 mVp -p or 1 mVp -p (depending on conditions)	
User-defined unit		\bigcirc	\bigcirc
Input/output floating		\bigcirc	\bigcirc
Isolation between channels		\bigcirc	-

Function Generator

SG-4100 Series

SG-4105

- Wide oscillation bandwidth from 10 mHz to 15 MHz (SG-4105)
- High accuracy (50 ppm: SG-4105, SG-4104) and high stability waveform output by employing DDS (Direct Digital Synthesizer) system
- Max 20Vp-p (Output terminal open)
- 0.0% to 100.0% duty control/ Up to 65,536 Burst waveforms
- Offset control +10 V to -10 V (output terminal open)
- Waveform outputs are connected continuously when vary the frequency
- Linear / Log sweep function
- Simultaneous display of the frequency and output voltage
- Easy operation (set performance can be checked at a glance)
- PMC option (SG-506: SG-4105) best suited for evaluating pulse motor control
- Provides Small-amplitude on Large-offset

PMC function*(Factory option)

Pulse motor control function SG-506 (SG-4105) Pulse motor control function
PMC option function controls pulse motor. Pulse motor acceleration or braking controls need to be reviewed not only by position control, but also under loaded condition. The PMC option simplifies the evaluation.
Pulse outputs in open collector (50V) are output from rear panel with PMC option.
Common motor driver circuit connected with PMC.
*PMC (Pulse Motor Control) is coined word by IWATSU TEST INSTRUMENT CORPORATION.
(Order any factory options when ordering the main unit. Additional orders after the delivery of the main unit require a separate fee.)

Upper waveform shows drive pulse for pulse motor, lower waveform shows sensor input waveform. After reaching maximum frequency while specified accelerating period, starts braking by sensor input signal. Then stops at specified pulse counts.

Boost Amp

SG-300

A useful drive amp that boosts signal generator output at 1 MHz full power band.
The SG-300 is an amplifier for converting function generator output.
This amplifire can be used for a wide range of purposes, including the development of inverters and other mechatronic equipment.
The amplifire has a low impedance ($\mathrm{L} 0 \Omega$) output, which enables it to be used with low power loss even driving low impedance loads.
It also supports amplitude modulation only at the positive side or only at the negative side, which enables zero level adjustment.

SG-300 Specifications

Maximum Voltage	$24 V p-p$ (with 50Ω Load) $/ 48 V \mathrm{Vp-p}$ (without load)
Maximum Current	DC or Peak 240 mA (with 50Ω load) / Continuous DC or Peak 300 mA (with Lo Ω output)
Full Power Band width	1 MHz (with a 50Ω load and $24 V \mathrm{~V}$-p output)

RS-USB Converter

SC-525

For use with the SG-4105

- The cable for connecting the RS-232
measurement unit to a personal computer's USB port.
- Overall length approximately 85 cm .
* Can also be used with the VOAC 7500H series, SC-7200H series.

Delay Pattern Generator

Delay Pattern Generator (6 channel pulse generator)

 DG-8000
Seamless change

The frequency, pulse width, and other settings can be
seamlessly changed during oscillation.

Tracking function

Parameters can be changed simultaneously for each channel.
Operation pattern control (DG-802)

\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O		
TRIG	SYNC	CH1	CH2	CH3	CH4	CH5		CH6
IN	OUT	(U)	(v)	(w)	(X)	(Y)		(z)

The operation pattern option enables continuous operation testing.

Rear panel configuration of a standard model
Signal generation method and output examples of the inverter option

Setting parameters and output examples of 6 channel independent pulse output

BASIC mode

Pulses can be easily generated by specifying any dependency, delay value, and width value for each of 6 CH . The output level can also be individually specified for each CH .

Tracking function
The pulse width, delay time, and other settings can be changed simultaneously for any combination of CH. Output example when the pulse width of channels 1 to 3 is changed simultaneously.

Lineup

Single-phase bipolar output in the INVERTER mode
Pulses can be easily generated by specifying the carrier frequency (Fc), modulation signal frequency (Fm), and modulation depth (that is, the rate of the modulation signal amplitude to the carrier amplitude).

3-phase 2-level in the INVERTER mode

Pulses can be easily generated by specifying the carrier frequency (Fc), modulation signal frequency (Fm), and modulation period (that is, the rate of the modulation signal amplitude to the carrier amplitude).

Items	Product name	Model number	
Main unit	Delay pattern generator	DG-8000	-
Software option	Inverter and PPG option	DG-801	INVERTER mode
	Test adapter	PPG mode	
Hardware option fanction			
	External modulation option	Operation pattern function	
	Quick synchronization option	DG-601	External modulation function

Gap control to prevent the high and low side switches of devices from being turned on simultaneously

If the phase U and X devices in the above illustration are turned on at the same time, they short-circuit, causing danger and damage.
The DG-8000 gap time control function automatically generates the specified dead time as shown in the illustration. Even if the frequency or cycle changes, the dead time remains constant. The gap time can be changed even during oscillation. It is also possible to turn devices on at the same time by specifying a negative value.

Independent control of the time axis and vertical axis

The parameters related to the time axis and those related to the vertical axis are separately controlled. These parameters can be changed manually or by using remote commands.

Support of ORed output on channel 1

Channel 1 has an ORed output function, which logically adds up to 6 sets of double pulses, making twelve pulses of specified channels, and outputs the result.

Easy generation of PWM signals

The inverter and PPG option (DG-801) enables you to output control signals for the buck chopper, single-phase uni-polar, single-phase bi-polar, and 3-phase 2-level. The modulation frequency and modulation depth can be changed even during oscillation. This is convenient for testing inverters because it is possible to obtain output to which pulse width modulation created from the inner sine wave and triangle wave is applied.

Note \#1:
The modulation signal is shown only for explanatory purposes. This signal is not output from the DG-8000.

When using the PPG function, this generator functions as a signal generator for complicated logic modulation waves on 6 channels using predetermined pulse patterns. Waveform patterns can be created using the waveform creation application (which is available free of charge.)

Variable control of the PWM signal frequency

The operation pattern option (DG-802) is convenient for continuous operation testing because it enables variable control of the frequency and modulation depth (in the inverter mode only). The patterns for such control are controlled using predetermined arbitrary waveforms. These waveforms can be created using the waveform creation application (which is available free of charge.)
The illustration on the
left shows an example
of when a trapezoid
waveform signal is used
to apply frequency
modulation.

Configuration example
DG-8000 main unit: 1
DG-801 inverter and PPG option: 1 DG-802 operation pattern option: 1

In the inverter mode, faulty patterns during the gap time can be inserted intentionally at regular intervals by using the error insertion function.

Application example: Continuous operation test of solenoid and other elements that control electromagnetic valves

The external modulation option (DG-601) enables external control of the following functions:

- Modulation of the pulse width and delay in the basic mode - Control of the modulation depth in the inverter mode - Control of the frequency and modulation depth for operation patterns

Configuration example DG-8000 main unit: 1
DG-802 operation pattern option: 1
DG-601 external modulation options

Parallel operation of three generators to support output from 18 channels

6 channels +6 channels +6 channels $=18$ channels

The quick synchronization option (DG-602) quickly enables up to 3 generators to synchronously operate by connecting BNC cables to the rear panel. If one of the generators goes down, the remaining two generators also shut down their output as a failsafe when this function is used.

[^6]Delay Pattern Generator DG-8000 Specifications
Common specifications

Pulse output terminal	
Number of channels	6CH
Output level	$\pm 10 \mathrm{~V}$ (open) / $\pm 5 \mathrm{~V}(50 \Omega)$
Output range	2 ranges (large/small)
Output logic	Positive/negative
Output impedance	50 ת
ORed output	Effective channels among channels 1 to 6 are ORed and the result is output (from channel 1)
Other output terminals	
SYNC OUT output	BNC terminal (1)
IRREGULAR output	BNC terminal (1)
ALARM output	BNC terminal (1)
10 MHz REF output	BNC terminal (1)
REAR TRIG output	Quick synchronization operation option (DG-602), BNC terminal (1)
Input terminals	
TRIG	BNC terminal (1), input: ± 5 V,max., threshold: $\pm 1 / 2$ of input level, variable
TRIG INH/RDY	BNC terminal (1), TTL level
Emergency stop input	BNC terminal (1), TTL level
10 MHz REF input	BNC terminal (1), 1V P-P $\pm 100 \mathrm{ppm}$ or less required
Frequency control input	For the external modulation option (DG-601) and operation pattern option (DG-802), BNC terminal (1)
External modulation (PWM)	For the external modulation option (DG-601), BNC terminal (3)
REAR TRIG input	For the quick synchronization operation option (DG-602), BNC terminal (1)
ALARM SENSE input	For the quick synchronization operation option (DG-602), BNC terminal (1)

Output control

Oscillation start/stop	The button to turn all channels on or off immediately
Individual setting	To turn all channels on or off immediately
When oscillation stops	Select relay OFF or set the output level to 0.

LED indicators

TRIG'd	Indicates when TRRG is applied.
OUTPUT, channels 1 to 6	Indicates when output is enabled and on.
REMOTE	Indicates up in the REMOTE status.
INHIIT/READY	Indicates up when oscillation is READY.
Pulse generation	Oscillation mode CONT, TRIG'd CONT, TRIG, GATE Gap control Supported. GGap control is a function that ensures non-overlapping time when phases V and X, phases U and Y, and phases W and Z overlap each other by specifying a delay or pulse width. This function can be also used to intentionally make these phases overlapped. Interface USB1.1 storage function only (Waveform file and Setup file) TRIG'd 100BASE-TX, 10BASE-T Remote (LAN) Supported as standard Remote (GPIB)

Screen display

LCD
Resolution
Oth-inch color LCD 320×240 pixcels SETUP Save/recall Supported (10 internal memories) Power-saving mode Supported Beep function Supported Status display Supported

Power supply unit	
AC power supply	AC 100V to AC 240V ($50 / 60 \mathrm{~Hz}$)
Power consumption	190VA,max
Mechanical section	
External dimensions (mm)	Approx. 400 (W) $\times 150$ (H) $\times 497$ (D) (without external projections)
Weight	Approx. 8kg
Environment	
Operating temperature	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (without condensation)
Operating humidity	85% R.H. or less at $+40^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Accessories	
Power cable	1
Operation manual	CD-ROM (1)

The following modulations can be applied by using the DG-601 external modulation option when the main unit function is in the Basic mode:

PWM modulation

The pulse width can be changed by an external input signal. The modulation depth can be individually specified for each external input channel (U/V/W) and freely allocated to output channels.

Delay modulation

The delay value can be changed by an external input signal. The modulation depth can be individually specified for each external input channel (U/V/W) and freely allocated to output channels.

Other specifications

BASIC mode	
Mode	Independent control of 6CH, 3-phase pattern A/B
6 independent channels	
Number of pulses	SINGLE pulse/ DOUBLE pulse
Frequency/cycle	1 mHz to 10 NHz (1mHz or 9-digit resolution) 100ns to 1,000s (10ns or 9 -digit resolution)
Frequency/cycle accuracy	$\pm 50 \mathrm{ppm}$
Standard channel	Select SYNC or both edges of the smallest channel
Delay	Ons, 10ns to 1,000s (10ns or 9-digit resolution)
Pulse width	Ons, 50ns to 1,000s (10ns or 9-digit resolution)
PHASE	0° to 360° (minimum resolution: 0.01°, frequency-dependent) 0% to 100% (minimum resolution: 0.001%, frequency-dependent)
DUTY	0° to 360° (minimum resolution: 0.01°, frequency-dependent) 0% to 100% (minimum resolution: 0.001%, frequency-dependent)
Gap time setting	0 to ± 1 cycle or 1s, max.
Gap resolution	Frequency specifying : Gap in 20 ns or 6 digits Cycle specifying : Gap in 10 ns or 6 digits
Frequency dividing function	Supported
Frequency dividing setting range	1 to 65,535
Tracking	Multiple parameters can be changed simultaneously.
Internal modulation	PVM modulation and delay modulation
3-phase pattern A	
Oscillation mode	CONT, TRIG'd CONT, GATE
Cycle (TC)	Determined by setting Tw1 and Tw2. Tc $=(\mathrm{Tw} 1+\mathrm{Tw} 2) \times 3$
Tw1 and Tw2 setting range	Ons, 100ns to 100s
Tw3 setting range	Ons, 100ns or more (Fc minus- Tw1)
Pulse width setting resolution	100ns or 9digits
Gap control	By setting Tw3.
Operation change during oscillation	Parameters can be seamlessly changed.
3-phase pattern B	
Oscillation mode	CONT, TRIG'd CONT, GATE
Cycle (Tc)	Determined by setting Tw and Tw3. Tc = Tw2+Tw3
Tw1 setting range	Ons, 100ns to 100s
Tw2 setting range	Ons, 100ns or up to more (FC-2 2 Tw1)
Tw3 setting range	100ns to 100s
Pulse width setting resolution	$100 n s$ or 9digits
Gap control	Realized by setting Tw2.
Operation change during oscillation	Parameters can be seamlessly changed.
Inverter mode (with the DG-801 inverter and PPG option mounted)	
Mode	Buck chopper, single-phase uni-polar, single-phase bi-polar 3-phase 2-level
Common setting parameters	
Carrier frequency	100 mHz to 1MHz
Modulation frequency	1 mHz to 10kHz
Other parameters	Modulation depth, modulation steps, gap time, and others

PPG mode (with the DG-801 inverter and PPG option mounted)

Frequency specifying mode

Frequency	1 mHz to 10 MHz (1mHz or 6-digit resolution)
Memory length	10 kW or 100 KW

Clock specifying mode

CK frequency	100Hz to 100MHz (resolution: 1mHz or 6digits)
Memory length	10kW or 100kW
Operation pattern (with the DG-802 operation pattern option mounted)	
Frequency control	The frequency (cycle) can be controlled using any waveform or external input.
Frequency control input	BNC terminal (1)
Modulation control	INVERTER mode only. The modulation can be controlled using any waveform or external input.
Faulty pattern insertion	Supported

External modulation (with the DG-601 external modulation option mounted)	
External modulation input	BNC terminal (3)
Frequency control input	BNC terminal (1)
Input range	2 ranges $(-2$ to +2 V or 0 to 02 V$)$
Input impedance	Approx. $1 \mathrm{M} \Omega$
Resolution	12 bits
Frequency characteristics	100 kHz amplitude of 90% or more (1kHz standard)

External modulation (with the DG-601 external modulation option mounted)	
REAR TRIG output	BNC terminal (2)
REAR TRIG input	BNC terminal (1)
ALARM SENSE input	BNC terminal (1)

B-H Analyzer

B-H Analyzer SY-8210 Series

Best suited for measuring magnetic properties of soft magnetic materials such as Silicon-steel plates, ferrites, and amorphous materials

Main features

- Wide measurement frequency for materials analysis which used in high frequencies
SY-8218: SINE from 10Hz to 10MHz, Pulse at Duty 50:50 from 10 Hz to 1 MHz
SY-8219: SINE from 10 Hz to 1 MHz , Pulse at Duty 50:50 from 10 Hz to 1 MHz
- 16times of acquisition data(comparing with former Iwatsu models)
Acquisition data at 8,192points/cycle perform precise measurement on parameters such as Hc (Coersive force), Br (Residual flux density), and other parameters.
- Pulse excitation function Both SINE(Sinusoidal) and Pulse(at Duty 50:50, 1MHz,max.) excitation are available as a standard function

- Temperature characteristic test with Scanner Chamber System Optional Items
- Power Amplifiers •DC bias power supply* •Single sheet measurement tester •High-current POD* *under development

SY-8200 Series Specifications

note) See page 59 for detailed explanation of measurement items.

SY-810 Remote Control Software

SY-810

Main Functions

- Enables auto-program measurements for temperature characteristics in combination with constant-temperature scanner systems.
- Auto-program measurements also possible with just the B-H analyzer.

ex. Auto-program measurment display

ex. Measurment result

Test condition menu

Features

- A maximum of twenty temperature conditions and a maximum of fourty excitation conditions can be set for a single test sample, which enables $800(=20 \times 40)$ different types of programming for the measurement conditions.
- Pulse excitation for the B-H analyzer can also be remotely controlled.
- Hard copies of the B-H analyzer measurement screen can also be automatically saved onto a USB memory in the JPEG or PNG formats.

System configuration of the constant-temperature scanner system remote control

System configuration of just the B-H analyzer remote control

USB - GPIB interface: NI GPIB-USB-HS hi-speed GPIB controller by National Instruments recommended.

Example of Full-automatic B-H Analyzer with Constant Temperature Scanner System for various evaluations

Temperature range : $-30^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Max. number of samples 20 : SY-320A
Max. number of samples 41 : SY-321A
Remote control PC software SY-810(option)

Interrior of SY-320A
(Scanner mechanizm)

Mini Single Sheet Tester (SST) SY-956

The best Magnetic Measurement for Single Sheet shape such as Magnetic Steel Sheets

Main features

I Wideband Measurement Frequency:10Hz-20kHz
I Max applied Magnetic field(Intensity): $10,000 \mathrm{~A} / \mathrm{m}$
I Sample size: Support to Measurement of Small Single Sheet: Width: less than 35 mm , Length:more than 36 mm , Thickness: less than 3 mm
I High Accuracy core loss measurement by new method

Example of Single sheets

SY-956 Series Specifications

Items			Specifications
Measurement	Measurement Method(Standards)		Excitation current method with vertical single yoke single sheet magnetic property test system / IEC60404-3 compatible with Yoke compensation function
	Excitation(primary) windings		40turns
	Maximum applied magnetic field strength		Approx. 10,000*1 A/m
	Measurement frequency range		Sine : 10Hz to 20kHz
	Specimen dimemsions		Width 35 mm or less, Length 36mm(L) or more and Thickness 3mm(H) or less. (1mm(H) or less when using provided B coil as standard accessory)
Signal detaction	Current detaction resistor		Approx 10hm
	Maximum measurement current		6A
	Maximum measurement voltage		200 V
Measurement accuracy	Amplitude		+/-2\% (Typical f $=10 \mathrm{kHz}, 200 \mathrm{~mA}, 00 \mathrm{mV}$ or larger amplitudes)
		Phase angle (Yoke compensation disabled) ${ }^{* 2}$	+/-0.15 deg (Typical f=10kHz, $200 \mathrm{~mA}, 200 \mathrm{mV}$ range or larger amplitudes)
		Phase angle (Yoke compensation enabled) *3	+/-0.15 deg (Typical f=10kHz, $200 \mathrm{~mA}, 200 \mathrm{mV}$ range or larger amplitudes)
	$\begin{aligned} & \text { Core } \\ & \text { loss } \end{aligned}$	Phase angle (Yoke compensation disabled) ${ }^{* 2}$	$\pm 5.6 \%$ (Typical f=10kHz, $200 \mathrm{~mA}, 200 \mathrm{mV}$ or larger amplitudes)
		Phase angle (Yoke compensation enabled) **	± 5.6 \% (Typical f=10kHz, $200 \mathrm{~mA}, 200 \mathrm{mV}$ or larger amplitudes)
Power	Power Supply Voltage		AC100V to AC240V
	Frequency Range		50Hz/60Hz
	Power Consumption		27VA, max.
Environmental conditions	Operating temperature		$5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$
	Specifications guaranteed temperature		$18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$
	Operating humidity		85\% PH($35^{\circ} \mathrm{C}$, non-condensation)
	Warm-up time		Measurement accuracy is a guaranteed value more than 30 minutes after power on
Outer dimensions			$330(\mathrm{~W}) \times 320(\mathrm{D}) \times 200(\mathrm{H}) \mathrm{mm}$, not including projections
Weight			Approx. 8.5kg
Accessories			Single Sheet measurement system cable : SY-957*1 B coil 01 (Windings : 35 turns, slit size : $12+/-0.1$ * $1.5+/-0.1$ * Bobbin length : $17+/-0.15(\mathrm{~mm}) * 1 \mathrm{pc}$. B coil 02(Windings : 100 turns, slit size : $32+/-0.1$ * $1.5+/-0.1$ * Bobbin length : $17+/-0.15(\mathrm{~mm})^{*} 1 \mathrm{pc}$. Thumbscrews for the terminal block *2, Tweezers *1, Blower blush *1, Accessory storage box *1, Power cable *1, Cord strap*1 and Instruction manual *1

${ }^{*} 1$: Excitation current at 5 A
*2 : Measurement accuracies of a composite magnet of a sample and a yoke.
*3: Measurement accuracy of a sample.

Main Options and System Examples

- Constant-temperature Scanner Systems

Constant-temperature
Chamber scanner system
SY-320A/SY-321A
For evaluations of samples' magnetic characteristics vs temperature
Automatic measurements possible with the $\mathrm{SY}-810$ (software.)

Temperature Range		$-30^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Sample Quantity	$5 \mathrm{SY}-30 \mathrm{~A}$	20 pcs
	$5 \mathrm{YY}-321 \mathrm{~A}$	41 pcs
Maximum Measurement Current		6 Apk

Spare turntable
SY-510/SY-511
A table for mounting samples

	Scanner	Number of samples
SY-510	SY-320A	$20 p C S$
SY-511	SY-321A	41 PCS

*Supplied 1set with the SY-320A and SY-321A as standard

Spare contact pin set SY-512
Consumable Components for Maintenance Purposes Consumable products for carrying out maintenance on constant-temperature scanner systems SY-320A and Sy-321A.
*Supplied 1set (4pcs) with the SY-320A and SY-321A as standard

- Software and Interface

PC Software

 SY-810Remote Control Software
(Supplied with the SY-509 and bulk head adaptor as standard accessories.) The NI GPIB-USD-HS manufactured by National Instruments is required separately for PC connection purposes. (see page 55)

Interface
NI ${ }^{*}$ GPIB-USB-HS
GPIB Controller Supporting Hi-Speed USB A USB-GPIB converter for use with controllers connected to PCS when the SY-810 remote control software is being used.
*NI : National Instruments

Interface

SY-509

USB-GPIB Conversion Adaptor
*Supplied with the SY-810 as standard equipment.

Power Amplifiers

Model	Frequency	Outpot Current	Output Voltage	Power Consumption
HSA4101-IW	DC to 10MHz	$\pm 14($ MAX)	$\pm 71 \mathrm{~V}$ (MAX)	50VA(MAX)
HSA4014-IW	DC to 1MHz	± 5.6 (MAX)	$\pm 75 \mathrm{~V}$ (MAX)	200VA(MAX)
IE-1125B	DC to 3MHz	± 5.2 (MAX)	$\pm 140 \mathrm{~V}$ (MAX)	350VA(MAX)

DC bias power supply

SY-931

SY-931 injects DC bias current(10A, max.) on choke transformer and Filter reactor for SWPS at 1 MHz , max.

Empty toroidal coil

SY-513

A toroidal-shaped empty case. It is used for measurement of a powder sample, sheet troid, etc.

Options for BH analyzer system

DC bias power source	
Model	Descriptions
SY-931	10A,max. DC biasing power source with eliminating AC component interferences
Single Sheet Tester	
Model	Descriptions
SY-956	$10 H z$ $35 m(20 k H z, 10,000 A / m, m a x . ~$

Highspeed Power Amplifiers	
Model	Descriptions
HSA4101-IW	71Vzero-peak, 1Azero-peak, 50VA
HSA4014-IW	75Vzero-peak, 5.6Azero-peak, 200VA
IE-1125B	140Vzero-peak, 5.2Azero-peak, 350VA
SY-911	Connection cable for IE-1125B

Constanttemperature Scanner Systems	
Model	Descriptions
SY-320A	-30deg to 150deg, max. 20pcs. with SY-510 turntable
SY-321A	-30deg to 150deg, max. 41pcs. with SY-511 turntable
SY-510	Spare turntable for SY-320A
SY-511	Spare turntable for SY-321A
SY-910	Connection cable (standard for SY-320A/SY-321A)
SY-512	Spere contact pin set for SY-320A/SY--321A

Software\&interfaces	
Model	Descriptions
SY-810	Remote control software
SY-811	Continous excitation function
SY-509	GPIB-USB conversion adaptor (provided as standard accessory for SY-810 software)
NI GPB-USB-HS	GPIB-USB interface between USB port of PC and SY-8218/SY-8219 via SY-509.

Others	
Model	Descriptions
SY-513	Blank Toroidal plastic case

Symbols for magnetic properties

Measurement items			
Symbol	Typical unit	Meaning	
Bm	[T]	Max. magnetic flux density	
Br	[T]	Residual magnetic flux density	
Hm	[A/m]	Max. magnetic field	
$1, \mathrm{~m}$	[A]	Max. exciting current	
Hc	[A/m]	Coersive force	
Br/Bm	-	Rectangular ratio	
$\mu \mathrm{a}$	-	Relative amplitude permeability	
PC	[W]	Core loss	
Pcv	$\left[\mathrm{W} / \mathrm{m}^{3}\right]$	Core loss per volume	
Pcm	[W/kg]	Core loss per mass	
θ	[deg]	Phase angle	
2 ¢m	[Wb]	Total flux linkage	
V2m	[V]	Max. induced voltage	
VA	[VA]	Apparent power	
L	[H]	Inductance	
R	[Ω]	Resistance	
\| Z		[Ω]	Impedance
μ^{\prime}	-	Complex perrmeability (real part)	
$\mu "$	-	Complex perrmeability (imaginary part)	
μ_{2}	-	Impedance permeability	
$\tan \delta$	-	Loss coefficient	
θ	[deg]	Phase angle	
Q	-	Quality factor	
THD	-	Total harmonic distortion	

Reference function
It remembers a measurement condition, a characteristcs value, and measurement waveform data (for each time of measurement).

Cursor measurement
Cross, Grad

Graphic display
B-t, H-t, V-t, I-t, B-H

- Some of the products are Regulated Products subiect to the Foreign Exchange and Foreign Trade Control Law of Japan. Export should not be allowed without appropriate governmental authorization. Please ask our sales office whether the product concerned is a Regulated Product
The products shown in this catalogue are current models at the date of publication
Designs and specifications are subject to change without notice for improvement.
- All enterpises and product names mentioned are trademarks of registered trademarks of the respective owners.

TW/ATEU
 http://www.iti.iwatsu.co.jp/

IWATEU TEGT INGTRUNGNTE 타묘.
Sales Dept.
International Sales Section
7-41, 1-Chome Kugayama, Suginami-Ku,
Tokyo, 168-8511 Japan
Tel: +81-3-5370-5483 Fax: +81-3-5370-5492

[^0]: Customers' special specifications are welcome. Please contact us.

[^1]: ${ }^{* 1}$ With insulation case
 *2 With insulation case. Optional probe is required for voltage measurements.
 *3 Non-isolation type unit driven by AC power only.

[^2]: *4 Optical cable set without sheath.
 *5 Standard item for isolation unit.
 *Distribution of DM-8000H series is limited in Japan and Asian markets.

[^3]: General Performance

 | Warm-up time | One hour atter power switched on |
 | :--- | :--- |
 | Operation Guaranteed | $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ (less than 80% or equivalent moisture at $40^{\circ} \mathrm{C}$. No Condensation) |
 | Temperature and Humidity | |

[^4]: - Maximum Permissible Voltage: 800Vpeak (continuous), $1100 V$ peak (for 1 minute)

[^5]: Max．input voltage： $780 \mathrm{Vms}, \pm 1100 \mathrm{~V}$ DC（continuous）
 In the case of $D C+A C V, 500$（less than 45 Hz ）or 300 （ 45 Hz or higher）must be added to the value of Accuracy digit in above．

[^6]: Configuration example
 DG-8000 main unit: 1
 DG-602 quick synchronization options: 3

